Browse > Article

Functionalization of Isoflavones with Enzymes  

Lee, Jae-Hwan (Department of Food Science and Technology, Seoul National University of Technology)
Doo, Eun-Hee (Department of Food Science and Technology, Ewha Womans University)
Kwon, Dae-Yong (Food Functional Research Division, Korea Food Research Institute)
Park, Jin-Byung (Department of Food Science and Technology, Ewha Womans University)
Publication Information
Food Science and Biotechnology / v.17, no.2, 2008 , pp. 228-233 More about this Journal
Abstract
Considerable progress has been made in functionalization of the soy isoflavones through enzymatic modification of daidzin, genistin, and glycitin. After hydrolysis of $\beta$-glucosides into their corresponding aglycones, these compounds were structurally modified via biotransformations such as regioselective hydroxylation, enantioselective reduction, regioselective methylation, and polymerization. These reactions often resulted in an increase of the biological activities (e.g., anti oxidative activity, antiproliferative activity) and/or improvement of the physico-chemcial properties (e.g., water solubility, bioavailability). This review briefly summarizes on-going research activities on the biofunctionalization of the soy isoflavones.
Keywords
isoflavone; enzyme; biotransformation; enzymatic modification;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Hoeck J, Fehr W, Murphy P, Welke G. Influence of geneotype and environment on isoflavone contents of soybean. Crop Sci. 40: 48-51 (2000)   DOI   ScienceOn
2 Ishimi Y, Yoshida M, Wakimoto S, Wu J, Chiba H, Wang X, Takeda K, Miyaura C. Genistein, a soybean isoflavone, affects bone marrow lymphopoiesis and prevents bone loss in castrated male mice. Bone 31: 180-185 (2002)   DOI   ScienceOn
3 Jang C, Lim J, Kim J, Park C, Kwon D, Kim Y-S, Shin D, Kim J-S. Change of isoflavone content during manufacturing of cheonggukjang, a traditional Korean fermented soyfood. Food Sci. Biotechnol. 15: 643-646 (2006)   과학기술학회마을
4 Esaki H, Watanabe R, Onozaki H, Kawakishi S, Osawa T. Formation mechanism for potent antioxidative O-dihydroxyisoflavones in soybeans fermented with Aspergillus saitoi. Biosci. Biotech. Bioch. 63: 851-858 (1999)   DOI   ScienceOn
5 Borriello SP, Setchell KDR, Axelson M, Lawson AM. Production and metabolism of lignans by the human fecal flora. J. Appl. Bacteriol. 58: 37-43 (1985)   DOI
6 Sperry JF, Wilkins TD. Arginine, a growth-limiting factor for Eubacterium lentum. J. Bacteriol. 127: 780-784 (1976)
7 Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485-493 (2001)   DOI   ScienceOn
8 Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food Chem. 46: 1887-1892 (1998)
9 Saito M, Hosoyama H, Ariga T, Kataoka S, Yamaji N. Antiulcer activity of grape seed extract and procyanidins. J. Agr. Food Chem. 46: 1460-1464 (1998)   DOI   ScienceOn
10 Yang S, Lee S, Lee S, Chang P-S, Choi S-S, Lee J. Succinyl daidzin and succinyl genistin are new isoflavone derivatives found in cheonggukjang. Food Sci. Biotechnol. 17: in press (2008)   과학기술학회마을
11 Tsangalis D, Ashton JF, Stojanovska L, Wilcox G, Shah N. Development of an isoflavone aglycone-enriched soymilk using soy germ, soy protein isolate and bifidobacteria. Food Res. Int. 37: 301-312 (2004)   DOI   ScienceOn
12 Uzzan M, Labuza T. Critical issues in R&D of soy isoflavone enriched foods and dietary supplements. J. Food Sci. 69: 77-86 (2004)   DOI   ScienceOn
13 Esaki H, Kawakishi S, Morimitsu Y, Osawa T. New potent antioxidative O-dihydroxyisoflavones in fermented Japanese soybean products. Biosci. Biotech. Bioch. 63: 1637-1639 (1999)   DOI   ScienceOn
14 Shahidi F, Naczk M. Phenolic compounds of major oilseeds and plant oils. pp. 83-130. In: Phenolics in Food and Nutraceuticals. Shahidi F, Naczk M (eds). CRC Press, Inc., Boca Raton, FL, USA (2004)
15 Ariga T. The antioxidative function, preventive action on disease and utilization of proanthocyanidins. Biofactors 21: 197-201 (2004)   DOI
16 Lee J, Renita M, Pioritto R, Martin S, Vodovotz Y. Isoflavone characterization and antioxidant activity of Ohio soybeans. J. Agr. Food Chem. 52: 2647-2651 (2004)   DOI   ScienceOn
17 Seeger M, Gonzalez M, Camara B, Munoz L, Ponce E, Mejias L, Mascayano C, Vasquez Y, Sepulveda-Boza S. Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Appl. Environ. Microb. 69: 5045-5050 (2003)   DOI
18 Desentis-Mendoza, Hernandez-Sanchez RMH, Moreno A, Emilio RDC, Chel-Guerrero L, Tamariz J, Jaramillo-Flores ME. Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from Ustilago maydis. Biomacromolecules 7: 1845-1854 (2006)   DOI   ScienceOn
19 Mejias L, Reihmann MH, Sepulveda-Boza S, Ritter H. New polymers from natural phenols using horseradish or soybean peroxidase. Macromol. Biosci. 2: 24-32 (2002)   DOI   ScienceOn
20 Lozovaya V, Lygin A, Ulanov A, Nelson R, Dayde J, Widhohn J. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 45: 1934-1940 (2005)   DOI   ScienceOn
21 Klus K, Barz W. Formation of polyhydroxylated isoflavones from the isoflavones genistein and biochanin A by bacteria isolated from tempe. Phytochemistry 47: 1045-1048 (1998)   DOI
22 Kinoshita E, Ozawa Y, Aishima T. Novel tartaric acid isoflavone derivatives that play key roles in differentiating Japanese soy sauces. J. Agr. Food Chem. 45: 3753-3759 (1997)   DOI   ScienceOn
23 Yang S, Chang P-S, Lee J. Isoflavone distribution and betaglucosidase activity in cheonggukjang, a traditional Korean whole soybean-fermented food. Food Sci. Biotechnol. 15: 96-101 (2006)   과학기술학회마을
24 Wang XL, Kim HJ, Kang SI, Kim SI, Hur HG. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Arch. Microbiol. 187: 155-160 (2007)   DOI   ScienceOn
25 Sathyamoorthy N, Wang TTY. Differential effects of dietary phytooestrogens daidzein and equol on human breast cancer MCF-7 cells. Eur. J. Cancer. 33: 2384-2389 (1997)   DOI   ScienceOn
26 Ibrahim RK, Bruneau A, Bantignies B. Plant O-methyltransferases: Molecular analysis, common signature, and classification. Plant Mol. Biol. 36: 1-10 (1998)   DOI   ScienceOn
27 Toda T, Uesugi T, Hirai K, Nukaya H, Tsuji K, Ishida H. New 6-Oacyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-Succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calciumdeficient diet. Biol. Pharm. Bull. 22: 1193-1201 (1999)   DOI   ScienceOn
28 Hendrich S, Wang G, Lin H, Xu X, Tew B, Wang H, Murphy P. Isoflavone metabolism and bioavailability. pp. 211-230. In: Antioxidant Status, Diet, Nutrition, and Health. Papas A (ed). CRC Press, Inc., Boca Raton, FL, USA (1999)
29 Shimoni E. Stability and shelf life of bioactive compounds during food processing and storage: Soy isoflavone. J. Food Sci. 69: 160-166 (2004)   DOI   ScienceOn
30 Izumi T, Piskula M, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucoside in humans. J. Nutr. 130: 1695-1699 (2000)
31 Minamida K, Tanaka M, Abe A, Sone T, Tomita F, Hara H, Asano K. Production of equol from daidzein by Gram-positive rod-shaped bacterium isolated from rat intestine. J. Biosci. Bioeng. 102: 247-250 (2006)   DOI   ScienceOn
32 Kim BG, Jung BR, Lee Y, Hur HG, Lim Y, Ahn JH. Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. J. Agr. Food Chem. 54: 823-828 (2006)   DOI   ScienceOn
33 Esaki H, Osawa T, Kawakishi S. Potent antioxidative O-dihydroxyisoflavones in soy sauces and their antioxidative activities. J. Jpn. Soc. Food Sci. Technol. 49: 476-483 (2002)   DOI   ScienceOn
34 Hirota A, Inaba M, Chen YC, Abe N, Taki S, Yano M, Kawaii S. Isolation of 8-hydroxyglycitein and 6-hydroxydaidzein from soybean miso. Biosci. Biotech. Bioch. 68: 1372-1374 (2004)   DOI   ScienceOn
35 Yang S, Chang P-S, Baek B, Hong S, Lee J. Changes of isoflavone distribution in soybeans using almond powder. Korean J. Food Sci. Technol. 39: 231-236 (2007)   과학기술학회마을
36 Eldridge A, Kwolek W. Soybean isoflavones: Effect of environment and variety on composition. J. Agr. Food Chem. 31: 394-396 (1983)   DOI
37 Zheng G, Zhu S. Antioxidant effects of soybean isoflavones. pp. 123-130. In: Antioxidants in Human Health and Disease. Basu T, Temple N, Garg M (eds). CABI Publishing, Wallingford, UK (1999)
38 Kataoka S. Functional effects of Japanese style fermented soy sauce (shoyu) and its components. J. Biosci. Bioeng. 100: 227-234 (2005)   DOI   ScienceOn
39 Kim DH, Kim BG, Lee Y, Ryu JY, Lim Y, Hur HG, Ahn JH. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J. Biotechnol. 119: 155-162 (2005)   DOI   ScienceOn
40 Kwon D, Jang J, Lee J, Kim Y-S, Shin D-H, Park S. The isoflavonoid aglycone-rich fractions of cheonggukjang, fermented unsalted soybeans, enhance insulin signaling, and peroxisome proliferator-activated $receptor-{\gamma}$ activity in vitro. Biofactors 26: 245-258 (2006)   DOI
41 Klus K, Barz W. Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe. Arch. Microbiol. 164: 428-434 (1995)   DOI
42 He XZ, Reddy JT, Dixon RA. Stress responses in alfalfa (Medicago sativa L). XXII. cDNA cloning and characterization of an elicitorinducible isoflavone 7-O-methyltransferase. Plant Mol. Biol. 36: 43-54 (1998)   DOI   ScienceOn
43 French CE, Bruce NC. Bacterial morphinone reductase is related to old yellow enzyme. Biochem. J. 312: 671-678 (1995)   DOI
44 Shimakage A, Shinbo M, Yamada S, Ito H. Changes in isoflavone content in soybeans during the manufacturing processes of tubunatto and hikiwari-natto. J. Jpn. Soc. Food Sci. Technol. 53: 185-188 (2006)   DOI
45 Ismail B, Hayes K. ${\beta}-Glycosidase$ activity toward different glycosidic forms of isoflavones. J. Agr. Food Chem. 53: 4918-4924 (2005)   DOI   ScienceOn
46 Kim BG, Kim H, Hur HG, Lim Y, Ahn JH. Regioselectivity of 7-Omethyltransferase of poplar to flavones. J. Biotechnol. 126: 241-247 (2006)   DOI   ScienceOn