Browse > Article

Parasporin-4, A Novel Cancer Cell-killing Protein Produced by Bacillus thuringiensis  

Inouye, Kuniyo (Graduate School of Agriculture, Kyoto University)
Okumura, Shiro (Fukuoka Industrial Technology Centre)
Mizuki, Eiichi (Fukuoka Industrial Technology Centre)
Publication Information
Food Science and Biotechnology / v.17, no.2, 2008 , pp. 219-227 More about this Journal
Abstract
Bacillus thuringiensis was isolated as a pathogen of the sotto disease of silkmoth larvae about a hundred years ago. Since then, this bacterium has attracted attentions of not only insect pathologists but also many other scientists who are interested in its strong and specific insecticidal activity. This has led to the recent worldwide development of B. thuringiensis-based microbial insecticides and insect-resistant transgenic plants, as well as a landmark discovery of par asp orin, a cancer cell-specific cytotoxin produced by B. thuringiensis. In this review, we describe examination of interaction between inclusion proteins of B. thuringiensis and brush border membrane of insects using a surface plasmon resonance-based biosensor, identification and characterization of parasporin-4, the latest parasporin produced by the B. thuringiensis A1470 strain, and an effective method for preparing the parasporin-4 from inclusion bodies expressed in the recombinant Escherichia coli cells.
Keywords
Bacillus thuringiensis; bacterial insecticide; cytotoxic activity; inclusion body; parasporin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Federici BA. Insecticidal bacteria: An overwhelming success for invertebrate pathology. J. Invertebr. Pathol. 89: 30-38 (2005)
2 Beegle CC, Yamamoto T. History of Bacillus thuringiensis Berliner research and development. Can. Entomol. 124: 587-616 (1992)   DOI
3 Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. R. 62: 775-806 (1998)
4 Ohba M. Bacillus thuringiensis populations naturally occurring on mulberry leaves: A possible source of the populations associated with silkworm-rearing insectaries. J. Appl. Microbiol. 80: 56-64 (1996)   DOI
5 Mizuki E, Park YS, Saitoh H, Yamashita S, Akao T, Higuchi K, Ohba M. Parasporin, human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clin. Diagn. Lab. Immun. 7: 625-634 (2000)
6 Lee D-W, Akao T, Yamashita S, Katayama H, Maeda M, Saitoh H, Mizuki E, Ohba M. Noninsecticidal parasporal proteins of a Bacillus thuringiensis serovar shandongiensis isolate exhibit a preferential cytotoxicity against human leukemic T cells. Biochem. Bioph. Res. Co. 272: 218-223 (2000)   DOI   ScienceOn
7 Okumura S, Saitoh H, Ishikawa T, Wasano N, Yamashita S, Kusumoto K, Akao T, Mizuki E, Ohba M, Inouye K. Identification of a novel cytotoxic protein, Cry45Aa, from Bacillus thuringiensis A1470 strain and its selective cytotoxic activity against various mammalian cell lines. J. Agr. Food Chem. 53: 6313-6318 (2005)   DOI   ScienceOn
8 Committee of parasporin classification and nomenclature. Parasporin Classification and Nomenclature. Available from: http:// parasporin.fitc.pref.fukuoka.jp/. Accessed Apr. 2, 2008
9 Masson L, Mazza A, Brousseau R, Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J. Biol. Chem. 270: 11887-11896 (1995)   DOI   ScienceOn
10 Luo K, Sangadala S, Masson L, Mazza A, Brousseau R, Adang MJ. The Heliothis virescens 170 kDa aminopeptidase functions as 'Receptor A' by mediating specific Bacillus thuringiensis Cry1Ac ${\delta}-endotoxin$ binding and pore formation. Insect Biochem. Molec. 27: 735-743 (1997)   DOI   ScienceOn
11 Ballester V, Granero F, Tabashnik BE, Malvar T, Ferre J. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Appl. Environ. Microb. 65: 1413-1419 (1999)
12 Wolfersberger M, Luethy P, Maurer A, Parenti P, Sacchi FV, Giordana B, Hanozet GM. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly. Comp. Biochem. Phys. A 86: 301-308 (1987)   DOI   ScienceOn
13 Kunitake T, Okahata Y, Tawaki S. Bilayer characteristics of 1,3- dialkyl- and 1,3-diacyl-rac-glycero-2-phosphocholines. J. Colloid. Interf. Sci. 103: 190-201 (1985)   DOI   ScienceOn
14 Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. P. Natl. Acad. Sci. USA 91: 4120-4124 (1994)   DOI
15 Oneda H, Inouye K. Refolding and recovery of recombinant human matrix metalloproteinase 7 (matrilysin) from inclusion bodies expressed by Escherichia coli. J. Biochem.-Tokyo 126: 905-911 (1999)   DOI   ScienceOn
16 Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. R. 62: 807-813 (1998)
17 Hayakawa T, Kanagawa R, Kotani Y, Kimura M, Yamagiwa M, Yamane Y, Takebe S, Sakai H. Parasporin-2Ab, a newly isolated cytotoxic crystal protein from Bacillus thuringiensis. Curr. Microbiol. 55: 278-283 (2007)   DOI
18 Yamashita S, Katayama H, Saitoh H, Akao T, Park YS, Mizuki E, Ohba M, Ito A. Typical three-domain Cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. J. Biochem.-Tokyo 138: 663-672 (2005)   DOI   ScienceOn
19 Kothary MH, Delston RB, Curtis SK, McCardell BA, Tall BD. Purification and characterization of a vulnificolysin-like cytolysin produced by Vibrio tubiashii. Appl. Environ. Microb. 67: 3707-3711 (2001)   DOI   ScienceOn
20 Hardy SP, Lund T, Granum PE. CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol. Lett. 197: 47-51 (2001)   DOI
21 Lee NA, Chang H-G, Kim HP, Kim HS, Park JH. Toxicity of 5 Bacillus cereus enterotoxins in human cell lines and mice. Food Sci. Biotechnol. 15: 458-461 (2006)   과학기술학회마을
22 Yang CY, Pang JC, Kao SS, Tsen HY. Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. J. Agr. Food Chem. 51: 100-105 (2003)   DOI   ScienceOn
23 Kondo S, Mizuki E, Akao T, Ohba M. Antitrichomonal strains of Bacillus thuringiensis. Parasitol. Res. 88: 1090-1092 (2002)   DOI
24 Yon JM. The specificity of protein aggregation. Nat. Biotechnol. 14: 1231 (1996)   DOI   ScienceOn
25 Akao T, Mizuki E, Yamashita S, Saitoh H, Ohba M. Lectin activity of Bacillus thuringiensis parasporal inclusion proteins. FEMS Microbiol. Lett. 179: 415-421 (1999)   DOI
26 Garczynski SF, Crim JW, Adang MJ. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis ${\delta}-endotoxin$ by protein blot analysis. Appl. Environ. Microb. 57: 2816-2820 (1991)
27 Mendelsohn M, Kough J, Vaituzis Z, Matthews K. Are Bt crops safe? Nat. Biotechnol. 21: 1003-1009 (2003)   DOI   ScienceOn
28 Knowles BH, Ellar DJ. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis ${\delta} -endotoxins$ with different insect specificities. Biochim. Biophys. Acta 924: 509-518 (1987)   DOI   ScienceOn
29 Ito A, Sasaguri Y, Kitada S, Kusaka Y, Kuwano K, Masutomi K, Mizuki E, Akao T, Ohba M. A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells. J. Biol. Chem. 279: 21282-21286 (2004)   DOI   ScienceOn
30 Bacillus thuringiensis ${\delta}-endotoxin$ Nomenclature Committee. Bacillus thuringiensis Toxin Nomenclature. Available from: http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/. Accessed Apr. 2, 2008
31 Cooper MA, Carroll J, Travis ER, Williams DH, Ellar DJ. Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment. Biochem. J. 333: 677-683 (1998)   DOI
32 Lee D-W, Katayama H, Akao T, Maeda M, Tanaka R, Yamashita S, Saitoh H, Mizuki E, Ohba M. A 28 kDa protein of the Bacillus thuringiensis serovar shandongiensis isolate 89-T-34-22 induces a human leukemic cell-specific cytotoxicity. Biochim. Biophys. Acta 1547: 57-63 (2001)   DOI   ScienceOn
33 Mizuki E, Ohba M, Akao T, Yamashita S, Saitoh H, Park YS. Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: In vitro cell-killing action on human cancer cells. J. Appl. Microbiol. 86: 477-486 (1999)   DOI   ScienceOn
34 Okumura S, Akao T, Higuchi K, Saitoh H, Mizuki E, Ohba M, Inouye K. Bacillus thuringiensis serovar shandongiensis strain 89-T- 34-22 produces multiple cytotoxic proteins with similar molecular masses against human cancer cells. Lett. Appl. Microbiol. 39: 89-92 (2004)   DOI   ScienceOn
35 Jung YC, Mizuki E, Akao T, Cote JC. Isolation and characterization of a novel Bacillus thuringiensis strain expressing a novel crystal protein with cytocidal activity against human cancer cells. J. Appl. Microbiol. 103: 65-79 (2007)   DOI   ScienceOn
36 Sanchis V, Chafaux J, Lereclus, D. Amélioration biotechnologique de Bacillus thuringiensis: Les enjeux et les risques. (Biotechnological improvement of Bacillus thuringiensis: Stakes and risks.) Ann. Inst. Pasteur Actual. 7: 271-284 (1996)   DOI   ScienceOn
37 Raimondi F, Kao JP, Fiorentini C, Fabbri A, Donelli G, Gasparini N, Rubino A, Fasano A. Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infect. Immun. 68: 3180-3185 (2000)   DOI
38 Adang MJ, Staver MJ, Rocheleau TA, Leighton J, Barker RF, Thompson DV. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36: 289-300 (1985)   DOI   ScienceOn
39 Masson L, Lu Y, Mazza A, Brousseau R, Adang MJ. The Cry1Ac receptor purified from Manduca sexta displays multiple specificities. J. Biol. Chem. 270: 20309-20315 (1995)   DOI   ScienceOn
40 Okumura S, Saitoh H, Wasano N, Katayama H, Higuchi K, Mizuki E, Inouye K. Efficient solubilization, activation, purification of recombinant Cry45Aa of Bacillus thuringiensis expressed as inclusion bodies in Escherichia coli. Protein Expres. Purif. 47: 144-151 (2006)   DOI   ScienceOn
41 Masson L, Mazza A, Brousseau R. Stable immobilization of lipid vesicles for kinetic studies using surface plasmon resonance. Anal. Biochem. 218: 405-412 (1994)   DOI   ScienceOn
42 Inouye K, Tanaka H, Oneda H. States of tryptophyl residues and stability of recombinant human matrix metalloproteinase 7 (matrilysin) as examined by fluorescence. J. Biochem.-Tokyo 128: 363-369 (2000)   DOI   ScienceOn
43 Hofte H, Whiteley HR. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255 (1989)
44 Kim J-H, Jee S-M, Park C-S, Kim H-Y. Detection of transgenic rice containing Cry1Ac gene derived from Bacillus thuringiensis by PCR. Food Sci. Biotechnol. 15: 625-630 (2006)   과학기술학회마을
45 Inouye K, Lee S-B, Tonomura B. Effect of amino acid residues at the cleavable site of substrates on the remarkable activation of thermolysin by salts. Biochem. J. 315: 133-138 (1996)   DOI
46 Schein CH. Solubility as a function of protein structure and solvent components. Bio-Technol. 8: 308-317 (1990)   DOI   ScienceOn
47 Ishiwata S. On a kind of severe flacherie (sotto disease). I. Dainihon Sanshi Kaiho, Report of the Sericultural Association of Japan. 114: 1-5 (1901)
48 Okumura S, Akao T, Mizuki E, Ohba M, Inouye K. Screening of the Bacillus thuringiensis Cry1Ac ${\delta}-endotoxin$ on the artificial phospholipid monolayer incorporated with brush border membrane vesicles of Plutella xylostella by optical biosensor technology. J. Biochem. Bioph. Meth. 47: 177-188 (2001)   DOI   ScienceOn
49 Kopito RR. Aggresomes, inclusion bodies, and protein aggregation. Trends Cell Biol. 10: 524-530 (2000)   DOI   ScienceOn
50 Wright DJ, Iqubal M, Granero F, Ferre J. A change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp kurstaki and B thuringiensis subsp aizawai. Appl. Environ. Microb. 63: 1814-1819 (1997)
51 Gustafson ME, Clayton RA, Lavrik PB, Johnson GV, Leimgruber RM, Sims SR, Bartnicki DE. Large-scale production and characterization of Bacillus thuringiensis subsp tenebrionis insecticidal protein from Escherichia coli. Appl. Microbiol. Biot. 47: 255-261 (1997)   DOI
52 Inouye K, Lee S-B, Nambu K, Tonomura B. Effects of pH, temperature, alcohols on the remarkable activation of thermolysin by salts. J. Biochem.-Tokyo 122: 358-364 (1997)   DOI   ScienceOn
53 Koller CN, Bauer LS, Hollingworth RM. Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native ${\delta}-endotoxin$ crystals. Biochem. Bioph. Res. Co. 184: 692-699 (1992)   DOI   ScienceOn
54 Gill SS, Cowles EA, Pietrantonio PV. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636 (1992)   DOI   ScienceOn
55 Yang G, Kang S. SPR-based antibody-antigen interaction for real time analysis of carbamate pesticide residues. Food Sci. Biotechnol. 17: 15-19 (2008)   과학기술학회마을
56 Ballester V, Escriche B, Mensura JL, Riethmacher GW, Ferre J. Lack of cross-resistance to other Bacillus thuringiensis crystal proteins in a population of Plutella xylostella highly resistance to Cry1Ab. Biocontrol Sci. Techn. 4: 437-443 (1994)   DOI   ScienceOn
57 Uemori A, Maeda M, Yasutake K, Ohgushi A, Kagoshima K, Mizuki E, Ohba M. Ubiquity of parasporin-1 producers in Bacillus thuringiensis natural populations of Japan. Naturwissenschaften 94: 34-38 (2007)   DOI
58 Yasutake K, Binh ND, Kagoshima K, Uemori A, Ohgushi A, Maeda M, Mizuki E, Yu YM, Ohba M. Occurrence of parasporinproducing Bacillus thuringiensis in Vietnam. Can. J. Microbiol. 52: 365-372 (2006)   DOI
59 Boonserm P, Pornwiroon W, Katzenmeier G, Panyim S, Angsuthanasombat C. Optimised expression in Escherichia coli and purification of the functional form of the Bacillus thuringiensis Cry4Aa ${\delta}-endotoxin$. Protein Expres. Purif. 35: Protein Expres. Purif.(2004)
60 $Pr\"{u}{ss}$ BM, Dietrich R, Nibler B, M$Pr\"{a}$rtlbauer E, Scherer S. The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl. Environ. Microb. 65: 5436-5442 (1999)