Browse > Article
http://dx.doi.org/10.4162/nrp.2015.9.2.144

Effects of excessive dietary methionine on oxidative stress and dyslipidemia in chronic ethanol-treated rats  

Kim, Seon-Young (Department of Food and Nutrition, College of Bio-Nano Science, Hannam University)
Kim, Hyewon (Department of Food and Nutrition, College of Bio-Nano Science, Hannam University)
Min, Hyesun (Department of Food and Nutrition, College of Bio-Nano Science, Hannam University)
Publication Information
Nutrition Research and Practice / v.9, no.2, 2015 , pp. 144-149 More about this Journal
Abstract
BACKGROUND/OBJECTIVE: The aim of this study was to examine the effect of high dietary methionine (Met) consumption on plasma and hepatic oxidative stress and dyslipidemia in chronic ethanol fed rats. MATERIALS/METHODS: Male Wistar rats were fed control or ethanol-containing liquid diets supplemented without (E group) or with DL-Met at 0.6% (EM1 group) or 0.8% (EM2 group) for five weeks. Plasma aminothiols, lipids, malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase were measured. Hepatic folate, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured. RESULTS: DL-Met supplementation was found to increase plasma levels of homocysteine (Hcy), triglyceride (TG), total cholesterol (TC), and MDA compared to rats fed ethanol alone and decrease plasma ALT. However, DL-Met supplementation did not significantly change plasma levels of HDL-cholesterol, cysteine, cysteinylglycine, and glutathione. In addition, DL-Met supplementation increased hepatic levels of folate, SAM, SAH, and SAM:SAH ratio. Our data showed that DL-Met supplementation can increase plasma oxidative stress and atherogenic effects by elevating plasma Hcy, TG, and TC in ethanol-fed rats. CONCLUSION: The present results demonstrate that Met supplementation increases plasma oxidative stress and atherogenic effects by inducing dyslipidemia and hyperhomocysteinemia in ethanol-fed rats.
Keywords
Ethanol; DL-Methionine supplementation; oxidative stress; plasma lipids; aminothiols;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nolin TD, McMenamin ME, Himmelfarb J. Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: application to studies of oxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci 2007;852:554-61.   DOI
2 Meister A. Glutathione metabolism and its selective modification. J Biol Chem 1988;263:17205-8.
3 Barak AJ, Beckenhauer HC, Tuma DJ. Methionine synthase. a possible prime site of the ethanolic lesion in liver. Alcohol 2002;26:65-7.
4 Selhub J. Homocysteine metabolism. Annu Rev Nutr 1999;19:217-46.   DOI
5 Toue S, Kodama R, Amao M, Kawamata Y, Kimura T, Sakai R. Screening of toxicity biomarkers for methionine excess in rats. J Nutr 2006;136:1716S-1721S.   DOI
6 Kugiyama K, Ohgushi M, Motoyama T, Hirashima O, Soejima H, Misumi K, Yoshimura M, Ogawa H, Sugiyama S, Yasue H. Intracoronary infusion of reduced glutathione improves endothelial vasomotor response to acetylcholine in human coronary circulation. Circulation 1998;97:2299-301.   DOI
7 Halsted CH, Villanueva J, Chandler CJ, Stabler SP, Allen RH, Muskhelishvili L, James SJ, Poirier L. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation. Hepatology 1996;23:497-505.   DOI
8 Waly MI, Kharbanda KK, Deth RC. Ethanol lowers glutathione in rat liver and brain and inhibits methionine synthase in a cobalamindependent manner. Alcohol Clin Exp Res 2011;35:277-83.   DOI
9 Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004;24:539-77.   DOI
10 Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview. J Nutr 2006;136:1636S-1640S.   DOI
11 Wang H, Jiang X, Yang F, Gaubatz JW, Ma L, Magera MJ, Yang X, Berger PB, Durante W, Pownall HJ, Schafer AI. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood 2003;101:3901-7.   DOI
12 Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990;1:228-37.   DOI
13 Lieber CS, Casini A, DeCarli LM, Kim CI, Lowe N, Sasaki R, Leo MA. S-adenosyl-L-methionine attenuates alcohol-induced liver injury in the baboon. Hepatology 1990;11:165-72.
14 Mato JM, Alvarez L, Ortiz P, Mingorance J, Duran C, Pajares MA. S-adenosyl-L-methionine synthetase and methionine metabolism deficiencies in cirrhosis. Adv Exp Med Biol 1994;368:113-7.   DOI
15 Albano E. Alcohol, oxidative stress and free radical damage. Proc Nutr Soc 2006;65:278-90.   DOI
16 Bailey SM, Robinson G, Pinner A, Chamlee L, Ulasova E, Pompilius M, Page GP, Chhieng D, Jhala N, Landar A, Kharbanda KK, Ballinger S, Darley-Usmar V. S-adenosylmethionine prevents chronic alcoholinduced mitochondrial dysfunction in the rat liver. Am J Physiol Gastrointest Liver Physiol 2006;291:G857-67.   DOI
17 Lieber CS. S-adenosyl-L-methionine: its role in the treatment of liver disorders. Am J Clin Nutr 2002;76:1183S-1187S.   DOI
18 Lu SC, Huang ZZ, Yang H, Mato JM, Avila MA, Tsukamoto H. Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. Am J Physiol Gastrointest Liver Physiol 2000;279:G178-85.   DOI
19 Deneke SM. Thiol-based antioxidants. Curr Top Cell Regul 2000;36: 151-80.
20 Munday R. Toxicity of thiols and disulphides: involvement of free-radical species. Free Radic Biol Med 1989;7:659-73.   DOI
21 Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem 1986;261:1582-7.
22 Toborek M, Kopieczna-Grzebieniak E, Drozdz M, Wieczorek M. Increased lipid peroxidation and antioxidant activity in methionineinduced hepatitis in rabbits. Nutrition 1996;12:534-7.   DOI
23 Yalcinkaya S, Unlucerci Y, Uysal M. Methionine-supplemented diet augments hepatotoxicity and prooxidant status in chronically ethanol-treated rats. Exp Toxicol Pathol 2007;58:455-9.   DOI
24 Lieber CS, DeCarli LM. Animal models of chronic ethanol toxicity. Methods Enzymol 1994;233:585-94.   DOI
25 Song Z, Zhou Z, Chen T, Hill D, Kang J, Barve S, McClain C. S-adenosylmethionine (SAMe) protects against acute alcohol induced hepatotoxicity in mice. J Nutr Biochem 2003;14:591-7.   DOI
26 Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN Jr, Sunderman FW Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin Chem 1987;33:214-20.
27 Wagner J, Claverie N, Danzin C. A rapid high-performance liquid chromatographic procedure for the simultaneous determination of methionine, ethionine, S-adenosylmethionine, S-adenosylethionine, and the natural polyamines in rat tissues. Anal Biochem 1984;140: 108-16.   DOI
28 Tamura T. Microbiological assay of folates. In: Picciano MF, Stokstad EL, Gregory JF III, editors. Folic Acid Metabolism in Health and Disease. New York (NY): Wiley-Liss; 1990. p.121-37.
29 Benevenga NJ, Harper AE. Alleviation of methionine and homocystine toxicity in the rat. J Nutr 1967;93:44-52.   DOI
30 Zhang R, Ma J, Xia M, Zhu H, Ling W. Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. J Nutr 2004;134:825-30.   DOI
31 Yang CM, Carlson GP. Effects of ethanol on glutathione conjugation in rat liver and lung. Biochem Pharmacol 1991;41:923-9.   DOI
32 Aykac G, Uysal M, Yalcin AS, Kocak-Toker N, Sivas A, Oz H. The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology 1985;36:71-6.   DOI
33 Barak AJ, Beckenhauer HC, Tuma DJ. S-adenosylmethionine generation and prevention of alcoholic fatty liver by betaine. Alcohol 1994;11:501-3.   DOI
34 Colell A, Garcia-Ruiz C, Morales A, Ballesta A, Ookhtens M, Rodes J, Kaplowitz N, Fernandez-Checa JC. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-Lmethionine. Hepatology 1997;26:699-708.
35 Avila MA, Garcia-Trevijano ER, Martinez-Chantar ML, Latasa MU, Perez-Mato I, Martinez-Cruz LA, del Pino MM, Corrales FJ, Mato JM. S-Adenosylmethionine revisited: its essential role in the regulation of liver function. Alcohol 2002;27:163-7.   DOI
36 Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 2010;16:1366-76.   DOI
37 Garcia-Ruiz C, Morales A, Colell A, Ballesta A, Rodes J, Kaplowitz N, Fernandez-Checa JC. Feeding S-adenosyl-L-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes. Hepatology 1995;21:207-14.
38 Lapenna D, de Gioia S, Ciofani G, Mezzetti A, Ucchino S, Calafiore AM, Napolitano AM, Di Ilio C, Cuccurullo F. Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation 1998;97:1930-4.   DOI