Browse > Article
http://dx.doi.org/10.4162/nrp.2011.5.2.101

Anti-inflammatory effect of the water fraction from hawthorn fruit on LPS-stimulated RAW 264.7 cells  

Li, Chunmei (College of Biomedical Science, Kangwon National University)
Wang, Myeong-Hyeon (College of Biomedical Science, Kangwon National University)
Publication Information
Nutrition Research and Practice / v.5, no.2, 2011 , pp. 101-106 More about this Journal
Abstract
The hawthorn fruit (Crataegus pinnatifida Bunge var. typica Schneider) is used as a traditional medicine in Korea. The objective of this study was to understand the mechanisms of the anti-inflammatory effects of the water fractionated portion of hawthorn fruit on a lipopolysaccharide (LPS)-stimulated RAW 264.7 cellular model. The level of nitric oxide (NO) production in the water fraction and LPS-treated RAW 264.7 cells were determined with an ELISA. The cytotoxicity of the water fraction and LPS was measured with an MTT assay. Expression of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-${\alpha}$, interleukin 6 (IL-6), and interleukin $1{\beta}$ (IL-$1{\beta}$) mRNA were analyzed with a reverse transcription polymerase chain reaction (RT-PCR). The water fraction of hawthorn fruit was determined to be safe and significantly inhibited NO production in LPS-stimulated RAW 264.7 cells and suppressed COX-2, (TNF)-${\alpha}$, IL-$1{\beta}$, and IL-6 expression. The observed anti-inflammatory effects of the water fraction of hawthorn fruit might be attributed to the down-regulation of COX-2, (TNF)-${\alpha}$, IL-$1{\beta}$, and IL-6 expression in LPS-stimulated RAW 264.7 cells.
Keywords
Anti-inflammatory; hawthorn fruit; LPS; RAW 264.7 cell;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Sherman MP, Aeberhard EE, Wong VZ, Griscavage JM, Ignarro LJ. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem Biophys Res Commun 1993;191:1301-8.   DOI   ScienceOn
2 MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323-50.   DOI   ScienceOn
3 Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424-37.
4 Li XA, Guo L, Asmis R, Nikolova-Karakashian M, Smart EJ. Scavenger receptor BI prevents nitric oxide-induced cytotoxicity and endotoxin-induced death. Circ Res 2006;98:e60-5.   DOI
5 Jayakumar T, Thomas PA, Geraldine P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. IFSET 2009;10:228-34.
6 Bosca L, Zeini M, Traves PG, Hortelano S. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 2005;208:249-58.   DOI   ScienceOn
7 Zhang Z, Ho WKK, Huang Y, James AE, Lam LW, Chen ZY. Hawthorn fruit is hypolipidemic in rabbits fed a high cholesterol diet. J Nutr 2002;132:5-10.
8 Froehlicher T, Hennebelle T, Martin-Nizard F, Cleenewerck P, Hilbert JL, Trotin F, Grec S. Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chem 2009;115:897-903.   DOI   ScienceOn
9 Kim KM, Choi JY, Yoo SE, Park MY, Lee BS, Ko TH, Sung SH, Shin HM, Park JE. HMCO5, herbal extract, inhibits $NF-_{\kappa}B$ expression in lipopolysaccharide treated macrophages and reduces atherosclerotic lesions in cholesterol fed mice. J Ethnopharmacol 2007;114:316-24.   DOI   ScienceOn
10 Ko SH, Choi SW, Ye SK, Yoo S, Kim HS, Chung MH. Comparison of anti-oxidant activities of seventy herbs that have been used in Korean traditional medicine. Nutr Res Pract 2008;2:143-51.   DOI
11 Park JH, Li C, Hu W, Wang MH. Antioxidant and free radical scavenging activity of different fractions from hawthorn fruit. J Food Sci Nutr 2010;15:44-50.   DOI
12 Li C, Son HJ, Huang C, Lee SK, Lohakare J, Wang MH. Comparison of Crataegus pinnatifida Bunge var. typica Schneider and C. pinnatifida Bunge fruits for antioxidant, $anti-{\alpha]-glucosidase, $and anti-inflammatory activities. Food Sci Biotechnol 2010;19:769-75.   DOI   ScienceOn
13 Hortelano S, Zeini M, Boscá L. Nitric oxide and resolution of inflammation. Methods Enzymol 2002;359:459-65.
14 Sacco RE, Waters WR, Rudolph KM, Drew ML. Comparative nitric oxide production by LPS-stimulatedmonocyte-derived macrophages from Ovis canadensis and Ovis aries. Comp Immunol Microbiol Infect Dis 2006;29:1-11.   DOI   ScienceOn
15 Farley KS, Wang LF, Razavi HM, Law C, Rohan M, Mc Cormack DG, Mehta S. Effects of macrophage inducible nitric oxide synthase in murine septic lung injury. Am J Physiol Lung Cell Mol Physiol 2006;290:L1164-72.   DOI
16 Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 1993;90:7240-4.   DOI   ScienceOn
17 Yoon WJ, Ham YM, Kim KN, Park SY, Lee NH, Hyun CG, Lee WJ. Anti-inflammatory activity of brown alga Dictyota dichotoma in murine macrophage RAW 264.7 cells. J Med Plant Res 2009;3:1-8.   DOI
18 Neels JG, Olefsky JM. Inflamed fat: what starts the fire? J Clin Invest 2006;116:33-5.
19 Pryor WA. The antioxidant nutrients and disease prevention-what do we know and what do we need to find out? Am J Clin Nutr 1991;53:391S-3S.
20 Rigelsky JM, Sweet BV. Hawthorn: pharmacology and therapeutic uses. Am J Health Syst Pharm 2002;59:417-22.
21 Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1 ${\beta]$ generation. Clin Exp Immunol 2007;147:227-35.
22 Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999;145:33-43.   DOI   ScienceOn
23 Jara LJ, Medina G, Vera-Lastra O, Amigo MC. Accelerated atherosclerosis, immune response and autoimmune rheumatic diseases. Autoimmun Rev 2006;5:195-201.   DOI   ScienceOn
24 Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 2006;124:823-35.   DOI   ScienceOn
25 Sarkar D, Fisher PB. Molecular mechanisms of aging-associated inflammation. Cancer Lett 2006;236:13-23.   DOI   ScienceOn
26 Walsh LJ. Mast cells and oral inflammation. Crit Rev Oral Biol Med 2003;14:188-98.   DOI   ScienceOn
27 Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 2005;4:281-6.   DOI   ScienceOn
28 Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating $NF-_{\kappa]B$ through the suppression of p65 phosphorylation. J Immunol 2007;179:7121-7.
29 Jung WK, Choi I, Lee DY, Yea SS, Choi YH, Kim MM, Park SG, Seo SK, Lee SW, Lee CM, Park YM, Choi IW. Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-kB pathways. Int J Biochem Cell Biol 2008;40:2572-82.   DOI   ScienceOn
30 Cheenpracha S, Park EJ, Yoshida WY, Barit C, Wall M, Pezzuto JM, Chang LC. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorg Med Chem 2010;18:6598-602.   DOI   ScienceOn
31 Mueller M, Hobiger S, Jungbauer A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem 2010;122:987-99.   DOI   ScienceOn
32 Sarkar D, Saha P, Gamre S, Bhattacharjee S, Hariharan C, Ganguly S, Sen R, Mandal G, Chattopadhyay S, Majumdar S, Chatterjee M. Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the $NF-_{\kappa]B$ pathway. Int Immunopharmacol 2008;8:1264-71.   DOI   ScienceOn
33 Hori M, Kita M, Torihashi S, Miyamoto S, Won KJ, Sato K, Ozaki H, Karaki H. Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. Am J Physiol Gastrointest Liver Physiol 2001;280:G930-8.
34 Li C, Han W, Wang MH. Antioxidant activity of hawthorn fruit in vitro. J Appl Biol Chem 2010;53:8-12.   DOI
35 Perkins DJ, Kniss DA. Blockade of nitric oxide formation downregulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol 1999;65:792-9.
36 Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 2006;38:1654-61.   DOI   ScienceOn
37 Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Ann Rev Immunol 1999;17:331-67.   DOI   ScienceOn
38 Aggarwal BB, Natarajan K. Tumor necrosis factors: developments during the last decade. Eur Cytokine Netw 1996;7:93-124.
39 Kim JY, Park SJ, Yun KJ, Cho YW, Park HJ, Lee KT. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kB in RAW264.7 macrophages. Eur J Pharmacol 2008;584:175-84.   DOI   ScienceOn