Browse > Article
http://dx.doi.org/10.4014/jmb.0807.402

Biological Synthesis of 7-O-Methyl Apigenin from Naringenin Using Escherichia coli Expressing Two Genes  

Jeon, Young-Min (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Bong-Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.5, 2009 , pp. 491-494 More about this Journal
Abstract
Within the secondary metabolite class of flavonoids, which consist of more than 10,000 known structures, flavones define one of the largest subgroups. The diverse function of flavones in plants as well as their various roles in the interaction with other organisms offers many potential applications including in human nutrition and pharmacology. We used two genes, flavone synthase (PFNS-l) that converts naringenin into apigenin and flavone 7-O-methyltransferase (POMT-7) that converts apigenin into 7-O-methyl apigenin, to synthesize 7-O-methyl apigenenin from naringenin. The PFNS-l gene was subcloned into the E. coli expression vector pGEX and POMT-7 was subcloned into the pRSF vector. Since both constructs contain different replication origins and selection markers, they were cotransformed into E. coli. Using E. coli transformants harboring both PFNS-l and POMT-7, naringenin could be converted into 7-O-methyl apigenin, genkwanin.
Keywords
Flavone synthase; genkwanin; O-methyltransferase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Balunas, M. J. and A. D. Kinghorn. 2005. Drug discovery from medicinal plants. Life Sci. 78: 431-441   DOI   ScienceOn
2 Kim, B. G., H. Kim, H. G. Hur, Y. Lim, and J.-H. Ahn. 2006. Regioselectivity of 7-O-methyltransferase of poplar to flavones. J. Biotech. 138: 155-162   DOI   ScienceOn
3 Lee, Y. J., B.-G. Kim, Y. Park, Y. Lim, H.-G. Hur, and J.-H. Ahn. 2006. Biotransformation of flavonoids with O-methyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096   ScienceOn
4 Leonard, E., Y. Yan, Z. L. Fowler, Z. Li, C.-G. Lim, K.-H. Lim, and M. A. G. Koffas. 2008. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharmaceut. 5: 275-265   DOI   ScienceOn
5 Winkel-Shirley, B. 2001. Flavonoid biosynthesis; A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485-493   DOI   PUBMED   ScienceOn
6 Julsing, M. K., A. Koulman, H. J. Woerdenbag, W. J. Quax, and O. Kayser. 2006. Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomolec. Eng. 23: 265-279   DOI   ScienceOn
7 Leonard, E., K.-H. Lim, P.-N. Saw, and M. A. G. Koffas. 2007. Engineering central metabolic pathways for high-level flavonoid production in Esherichia coli. Appl. Environ. Microbiol. 73: 3877-3886   DOI   ScienceOn
8 Turnbull, J. J., J. Nakajima, R. W. D. Welford, M. Yamazaki, K. Saito, and C. J. Schorield. 2004. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J. Biol. Chem. 279: 1206-1216   DOI   ScienceOn
9 Harborne, J. B. and C. A. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55: 481-504   DOI   ScienceOn
10 Miyahisa, I., M. Kaneko, N. Funa, H. Kawasaki, H. Kojima, Y. Ohnishi, and S. Horinouchi. 2006. Efficient production of (2S)- flavones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 68: 498-504   DOI   ScienceOn
11 Middleton, E. Jr., C. Kandaswami, and T. C. Theoharides. 2000. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52: 673-751   PUBMED   ScienceOn
12 Kim, B. G., J. H. Kim, J. Kim, C. Lee, C., and J.-H. Ahn. 2008. Accumulation of flavonols by ultraviolet-B is related to induction of flavanone 3-$\beta$-hydroxylase and flavonol synthase in soybean. Mol. Cell 25: 247-252   ScienceOn
13 Leonard, E. and M. A. G. Koffas. 2007. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl. Environ. Microbiol. 73: 7246-7251   DOI   ScienceOn
14 Croteau, R., T. M. Kutchan, and N. G. Lewis. 2000. Natural products (secondary metabolites), pp. 1250-1318. In B. B. Buchanan, W. Gruissern, and R. L. Jones (eds.). Biochemistry and Molecular Biology of Plant. American Society of Plant Physiologists, Rockville, Maryland
15 Tahara, S. 2007. A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci. Biotechnol. Biochem. 71: 1387-1404   DOI   ScienceOn
16 Katsuyzma, Y., N. Funa, I. Miyahisa, and S. Horiniuchi. 2007. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Bio. 14: 613-621   DOI   ScienceOn
17 Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 54: 733-749   DOI   ScienceOn
18 Martini, N. D., D. R. Katerere, and J. N. Eloff. 2004. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol. 93: 207-212   DOI   ScienceOn