Browse > Article
http://dx.doi.org/10.5187/JAST.2005.47.6.947

Activation of RAW 264.7 Macrophage by Digested Bacterial Cell of Pig-derived Lactobacillus Strains  

Kim, D.W. (National Livestock Research Institute, RDA)
Cho, S.B. (National Livestock Research Institute, RDA)
Jeong, H.Y. (National Livestock Research Institute, RDA)
Moon, H.G. (National Livestock Research Institute, RDA)
Lee, H.J. (National Livestock Research Institute, RDA)
HwangBo, J. (National Livestock Research Institute, RDA)
Chung, W.T. (National Livestock Research Institute, RDA)
Choi, C.W. (National Livestock Research Institute, RDA)
Chung, I.B. (National Livestock Research Institute, RDA)
Publication Information
Journal of Animal Science and Technology / v.47, no.6, 2005 , pp. 947-954 More about this Journal
Abstract
This study was conducted to investigate the effects of hydrolyzed Lactobacillus supplementation with digestive enzymes treatment on the macrophage activation, the induction of nitric oxide(NO), interleukin (IL)-6 and tumor necrosis factor(TNF)-$\alpha$. The RAW 264.7 murine macrophage was exposed to porcine Lactobacillus strains which were digested with both pepsin and pancreatin. The production of NO, TNF-$\alpha$ and IL-6 in the macrophage were strain and dose-dependent, respectively. The induction of NO and cytokines were higher in both 3149 and 3146 strains compared with other Lactobacillus strains. Overall, the level of NO was observed at the lower range between 10 and 150 μg hydrolysates per ml, whereas IL-6 and TNF-$\alpha$ were observed at relatively higher concentration between 50 and 300 μg hydrolysates per ml. Lactobacillus strains which produced a high level of NO also showed a high induction of TNF-$\alpha$ and IL-6. Therefore, the present results suggest that hydrolysates of Lactobacillus strains are related to induction of several macrophage mediators, and then it could be beneficially used to modulate gastrointestinal immune function of the host. Also, the methodogly employed in this study might be useful to investigate the effects of lactic acid bacteria on gastrointestinal immunity.
Keywords
Lactobacillus; Macrophage; Nitric oxide; Cytokine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sanders, M. E. 1993. Effect of consumption of lactic cultures on human health. Adv. Food Nutr. Res. 37:67-130   DOI   ScienceOn
2 Cross, M. L., Ganner, A., Teilab, D. and Fray, L. M. 2004. Patterns of cytokine induction by grampositive and gram-negative probiotic bacteria. FEMS Immunology and Medical Microbiology. 42: 173-180   DOI   ScienceOn
3 Dong, W., Azcona-Olivera. J. I., Brooks, K. H., Linz, J. E. and Pestka, J. J. 1994. Elevated gene expression and production of interleukins 2, 4, 5, and 6 during exposure to vomitoxin(deoxynivalenol) and cycloheximide in the EL-4 thymoma. Toxicol. Appl. pharmacol. 127:282-290   DOI   ScienceOn
4 Fuller, R. 1991. Probiotics in human medicine. Gut. 32:439-442   DOI   ScienceOn
5 Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. Fed. Eur. Microbial. Rev. 87:175-188
6 Hatcher, G. E. and Lambrecht, R. S. 1993. Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy Sci. 76:2485-2492   DOI
7 Kang, K. Y., Park, S. H. and Choe, T. B. 1994. Immunostimulation effect of cell wall components isolated from Lactobacillus plantarum. J. Microbiol. Biotechnol. 4:195-199
8 Kaur, I. P., Chopra, K. and Saini, A. 2002. Probiotics: potential pharmaceutical applications. European Journal of Pharmaceutical Science. 15: 1-9   DOI   ScienceOn
9 Miettinen. M., Voupio-Varkila, J. and Varkila, K. 1996. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin 10 is induced by lactic aicd bacteria. Infection and Immunity. 64:5403-5405
10 Marteau, P., Pochart, P., Bouhnik, Y., Zidi, S., Goderel, I. and Rambaud, J. C. 1992. Survival of Lactobacillus acidophilus and Bifidobacterium sp. in the small intestine following ingestion in fermented milk. A rational basis for the use of probiotics in man. Gastroenterol Clin. Biol. 16:25-8
11 Nathan, C. 1995. Natural resistance and nitric oxide. Cell. 82:873-876   DOI   ScienceOn
12 Nishimura-Uemura, J., Kitazawa, H, Kawai, Y., Itoh, T., Oda, M. and Saito, T. 2003. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiology. 20:267-273   DOI   ScienceOn
13 Sakai, T., Hamakawa, M. and Shirai, K. 1996. Protective effects of digested bacterial cell powder on diarrhea in suckling piglets. Agri-Practice. 17: 23-27
14 Boisen, S. and Fernandez, J. A. 1995. Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Animal Feed Science and Technology. 51:29-43   DOI   ScienceOn
15 SAS. 2000. SAS/STAT User's guide(Release 8.1 ed.). Statistics, SAS Institute Inc., Cary., NC
16 Adams, D. O. and Hamilton, T. A. 1987. Molecular transductional mechanisms by which IFN and other signals regulate macrophage development. lmmunol. Rev. 97:5
17 Ben-Efraim, S. and Bonta, I. L. 1994. Modulation of antitumor acitivity of macropahges by regulation of eicosanoids and cytokine production. Int. J. Immunol. Pharmacol. 16:397-399
18 Clark, P. A. and Martin, J. H. 1994. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: III -Tolerance to simulated bile concentrations of human small intestines. Cult. Dairy Prod. J. 29:18-21
19 Ding, A. H., Nathan, C. F. and Stuehr, D. J. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 141:2407- 2412
20 Link-Amster, H., Rochat, F., Saudan, K. Y., Mignot, O. and Aeschlimann, J. M., 1994. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10:55-64   DOI   ScienceOn
21 Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6:3051-3064
22 Fukushima, Y., Kawata, Y., Mizumachi, K., Kurisaki, J. and Mitsuoka, T. 1999. Effect of bifidobacteria feeding on fecal flora and production of immunoglobulins in lactating mouse. Int. J. Food Microbiology. 46:193-197   DOI   ScienceOn
23 Kirjavainen, P. V., El-Nezami, H. S., Salminen, S. J., Ahokas, J. T. and Wright, P. F. 1999. The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunology and Medical Microbiology. 26: 131-135   DOI   ScienceOn
24 Kimoto, H., Mizumachi, K., Okamoto, T. and Kurisaki, J. 2004. New Lactococcus strain with immunomodulatory activity: enhancement of Thl-type immune response. Microbiol. Immunol. 48:75-82
25 Kitazawa, H., Itoh, T., Tomioka, Y., Mizugaki, H. and Yamaguchi, T. 1999. Induction of IFN-$\gamma$ and IL-1$\alpha$ production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int. J. Food Microbiology. 31 :99-106
26 Marin, M. L., Lee, J. h., Murtha, J., Ustunol, Z. and Pestka, J. J. 1997. Differential cytokine production in clonal macrophage and t-cell lines cultured with Bifidobacteria J. Dairy Sci. 80: 2713-2720   DOI   ScienceOn
27 Sekine, K., Kasashima, T. and Hashimoto, Y. 1994. Comparison of the TNF-$\alpha$ level induced by human-derived Bifidobacterium longum and ratderived Bifidobacterium animalis in mouse peritoneal cells. Bifidobact. Microfl. 13:79-89
28 Snyder, S. H. and Bredt, D. S. 1992. Biological roles of nitric oxide. Sci. Amer. 266:68-77
29 Takahashi, T., Oka, T., Iwana, H., Kuwata, T. and Yamamoto, Y. 1993. Immune response of mice to orally administered lactic acid bacteria. Biosci. Biotech. Biochem. 57:1557-1560   DOI
30 Tejada-Simon, M. V. and Pestka, J. J. 1999. Proinflammatory Cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J. Food Prot. 62:1435-1444
31 Urban, J. L., Shepard, H. M., Rothstein, J. L., Sugarman, B. J. and Schreiber, H. 1986. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc. Natl. Acad. Sci. USA. 83:5233-5237   DOI
32 송미경, 우석규, 장정순, 김중학, 김화영, 홍성길, 이병욱, 빅미현, 정건섭. 2003. 한국인으로부터 분리한 Pediococcus pentosaceus EROM101의 면역증강 및 항암활성. Kor. J. Microbiol. Biotechnol. 31: 355-361