Browse > Article
http://dx.doi.org/10.5187/JAST.2003.45.2.199

The Biological Effects of β-Cyclodextrin on Antithrombotic Activity and Plasma Lipid Metabolism in Rats  

Park, B. S. (Major of Animal Life Science, Kangwon National University)
Publication Information
Journal of Animal Science and Technology / v.45, no.2, 2003 , pp. 199-210 More about this Journal
Abstract
The effect of feeding a cyclic oligosaccharide, $\beta$-cyclodextrin($\beta$CD) on plasma cholesterol and triacylglyceride concentrations and on antithrombotic activity were investigated in rats fed a control chow diet, or one either high in cholesterol or in saturated fat. The bleeding time of $\beta$CD-fed groups was significantly prolonged by 293%, 157% and 218% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The whole blood clotting time was significantly increased by 202%, 168% and 211% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The $\beta$CD diet caused a marked decrease in plasma total lipid(TL), triacylglyceride(TAG), total cholesterol (TC) and low density lipoprotein- cholesterol (LDL-C) concentrations. The plasma TL concentration was significantly decreased by 70%, 82% and 87% in normal, high cholesterol and high fat diet fed groups as compared to the control group, respectively(p<0.05). The plasma TAG concentration was significantly decreased by 89%, 43% and 59% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The plasma TC concentration was significantly decreased by 28%, 62% and 36% in normal, high cholesterol and high fat diet fed groups, respectively, as compared to the control group(p<0.05). The LDL-C concentration was significantly decreased by 39%, 54% and 25% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The plasma total bile acids contents of $\beta$CD group was significantly increased by 66%, 95% and 97% in normal, high cholesterol and high fat diet fed groups as compared to control group, respectively(p<0.05). The hepatic HMG-CoA reductase activity was significantly lowered by 41% in the $\beta$CD-fed group compared to normal diet fed rats(p<0.05). The fecal steroid excretions of the $\beta$CD groups was significantly increased by 167% in normal diet fed rats(p<0.05). These results suggest that the $\beta$CD has a biological active function on antithrombotic activity and is hypolipidemic, hypotriglyceridemic and hypocholesterolimic agents. These are all effects that can help to prevent obesity and coronary heart disease in humans.
Keywords
$\beta$-cyclodextrin; Antithrombotic activity; Triacylglyceride; Cholesterol; Steroid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balasubramaniam, S., Goldstein, J. L., Faust, J. R., Brunschede, G. Y. and Brown, M. S. 1977. Lipoprotein-mediated regulation of 3-hydroxy-3- methylglutaryl coenzyme A reductase activity and cholesterol ester metabolism in the adrenal gland of the rat. J. Biol. Chem. 252:1771-1782.
2 Catala, I., Juste, C., Boehler, N., Ferezou, J., Andre, M., Riottot, M., Cutton, C., Lafront, H., Bornet, F. and Corring, T. 2000. cholesterol crystallization in gall-bladder bile of pigs given cholesterol-$\beta$-cyclodextrin-enriched diets with either casein or soybean concentrate as protein sources. Brit. J. Nutr. 83:411-420.
3 Chen, I. S., Subrananiam, S., Vahoumy, G. V., Cassidy, M. M., Ikeda, I. and Kritchersky, D. 1989. A comparison of the digestion and absorption of cocoa butter and palm kernel oil and their effects of cholesterol absorption in rats. J. Nutr. 119:1569-1573.
4 Einarsson, K., Ericsson, S., Ewerth, S., Reihner, E., Rudling, M., Stahlberg, D. and Angelin, B. 1991. Bile acid sequestrants:mechanisms of action on bile acid and cholesterol metabolism. Eur. J. Clin. Pharmacol. 40[suppl 1]:553-558.
5 Favier, M. -L., Remesy, C., Moundras, C. and Demigne, C. 1995. Effect of cyclodextrin on plasma lipids and cholesterol metabolism in the rat. Metabolism. 44:200-206.
6 Ferezou, J., Riottot, M., Serougne, C., Cohen- Solal, C., Catala, I., Aliguier, C., Parquet, M., Juste, C., Lafont, H., Mathe, D., Corring, T. and Lutton, C. 1997. Hypocholesterolemic action of $\beta$- cyclodextrin and its effects on cholesterol metabolism in pigs fed a cholesterol-enriched diet. J. Lipid Res. 38 : 86-600.
7 Grundy, S. M., Ahrens, E. H. Jr. and Salen, G. 1971. Interruption of the enterohepatic circulation of bile acids in man; Comparative effects of cholesterylamine and ileal exclusion on cholesterol metabolism. J. Lab. Clin. Med. 78:94-121.
8 Han, Y. N., Bail, S. K., Kim, T. H. and Han, B. H. 1987. Antithrombotic activiies of saponins from ilex pubescens. Arch. Pharm. Res. 10:115-120.   DOI
9 Hashimoto, H. 1991. Preparation, structure, Property and application of branched cyclodextrins. In: New trends in cyclodextrins and derivatives (Duch${\acute{e}}$ne, D) PP. 97-156. Editions de Sant${\acute{e}}$ Paris. France.
10 Homstra, G., Christ-Hazelhof, E., Haddenman, E., Hoor, F. and Nugteren, D. H. 1981. Fish oil feeding lowers thromboxane and prostacylin production by rat platelets and aorta and does not result in the formation of prostaglandin $I_3$. Prostaglandins. 21:727-739.   DOI   ScienceOn
11 Hostmark, A. T., Lystad, E., Haung, A. and Eilertsen, E. 1989. Plasma lipids, lipoproteins, and fecal excretion of neutial sterols and bile acids in rats fed various and high diets or a low fat/high sucrose diet. J. Nutr. 119:356-363.
12 Miettinen, T. T., Ahrens, E. H. and Grundy, S. M. 1965. Quantitative isolation and gas liquid chromatographic analysis of total dietary and fecal neutral steroids. J. Lipid Res. 6:411-424.
13 Abadie, C., Hug, M., Kubli, C. and Gains, N. 1994. Effect of cyclodextrins and undigested starch on the loss of chenodeoxycholate in the faeces. Biochem. J. 299:725-730.
14 American Institute Nutrition. 1977. Report of the American Institute of Nutrition. Ad committee on standards for nutritional studies. J. Nutr. 107: 1349-1348.
15 Antenucci, R. N. and Palmer, J. K. 1984. Enzy- matic degradation of $\alpha$-and $\beta$-cyclodextrin by bacteroides of the human colon. J. Agric. Food Chem. 32:1361-1321.   DOI
16 Moncada, S. and Vane, J. R. 1979. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. New Engl. J. Med. 300:1142-1147.   DOI   ScienceOn
17 Myant, N. B. and Eder, H. A. 1961. The effect of bilary brainge upon the synthesis of cholesterol in the liver. J. Lipid Res. 2:363-368.
18 Nagamoto, S. 1985. Cyclodextrins-expanding the development of their functions and applications. Chem. Economy Eng. Rev. 17 : 28-34.
19 Newsweek. 1992. Betting on a guilt-free egg. Newsweek. April : 6.
20 Oakenfull, D. G., Pearce, R. J. and Sidhu, G. S. 1991. Low-cholesterol dairy products. Am. J. Dairy Tech. November: 110-112.
21 Olivier, P., Verwaerde, F. and Hedges, A. R. 1991. Subchronic toxicity of orally administered beta-cyclodextrin in rats. J. Am. Coli. Toxicol. 10:407-418.   DOI
22 Paul, P., Remesha, C. S. and Ganguly, J. 1979. On the mechanism of hypo- cholestelolenic effects of polyunsaturated lipids. Adv. Lipid Res. 17: 155-171.
23 Flourie, B., Molis, C. A., Chour, L., Dupas, H., Hatat, C. and Rambaud, J. L. 1993. Fate of $\beta$- cyclodextrin in the human intestine. J. Nutr. 123: 676-680.   DOI
24 Grundy, S. M., Ahrens, E. H. Jr. and Miettinen, T. A. 1965. Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acid. J. Lipid Res. 6:397-410.
25 Frings, C. S. and Dunn, R. T. 1970. A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. Am. J. Clin. Path. 50:89-91.
26 Frijlink, H. W., Eissens, A. C., Hefting, N. R., Poelstra, K., Lerk, C. F. and Meijer, D. K. F. 1991. The effect of parenterally administered cyclodextrin on cholesterol levels in the rat. Phanm. Res. 8:9-16.
27 Fukushima, M., Akiba, S. and Nakano, M. 1996. Comparative hypocholesterolemic effect of six vegetable oils, in cholesterol-fed rat. Lipids. 31: 415-419.
28 Riottot, M., Olivier, P., Helet, A., Caboche, J-J., Parquet, M., Khallou, J. and Lutton, C. 1993. Hypolipidemic effects of $\beta$ -cyclodextrin in the hamster and in the genetically hypercholesterolemic rico rat. Lipids. 28:181-188.
29 Sanders, T. A. B. and Roshanai, F. 1983. The influence of different types of $\omega$3 polyunsaturated fatty acids on blood lipids and platelet in healthy volunteers. Clin. Sci. 64:91-99.
30 Saenger, W. 1994. Structural aspects of cyclodextrins and their inclusion complexex. Incl. Compounds. 2:231-233.
31 Suzuki, M. and Sato, A. 1985. Nutritional significance of cyclodextrins: Indigestibility and hypolipidemic effects of $\alpha$-cyclodextrin, J. Nutr. Sci. Vitaminol. 31 : 209-223.
32 Thorngren, M. and Gustafson, A. 1981. Effects of 11-week increase in dietary eicosapentaenoic acid on bleeding time, lipids and platelet aggregation. Lancet. II : 1190-1193
33 Tkac, I. 1997. The severity of coronary atherosclerosis in type, 2 diabetes mellitus is related to the number of circulating triacylglyceide-rich lipoprotein particles. Arteriosclen. Thromb. Vase. BioI. 17:3633-3638.
34 Yen, G. -L. and Chen, C. -J. 2000. Effects of fractionation and the refining process of lard on cholesterol remoral by $\beta$-cyclodextrin. J. Food Sci. 65:622-624.
35 Mclennan, P. L., Abeywardena, M. Y. and Charnock, J. S. 1990. Rerersal of the arrhythmogenic effects of long-term saturated fatty acid intake by dietary n-3 and n-6 polyunsaturated fattyacids. Am. J. Clin. Nutr. 51:53-58.   DOI
36 uste, C., Catala, I., Riottot, M., Andre, M., Parquet, M., Lyan, B., Bequet, F., Ferezou-Viala, J., Serougne, C., Domingo, N., Lutton, C., Lafont, H. and Corring, T. 1997. Inducing cholesterol precipitation from pig bile with $\beta$-eyclodextrin and cholesterol dietary supplementation. J. Hepatology. 26:711-721.
37 Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Rorndall, R. J. 1951. Protein measurement with the folin phenal reagent. J. Biol. Chem. 193:265-275.
38 McDonald, B. E., Gerrard, J. M., Bruce, V. M. and Comer, E. J. 1989. Comparison of the effect of canola oil and sunflower oil on plasma lipids and lipoproteins and on in vivo thromboxane $A_2$ and prostacyclin production in healthy young men. Am. J. Clin. Nutr. 50:1382-1388.   DOI
39 Qureshi, A. A., Abuirmeileh, N., Burger, W. C., Din, Z. Z. and Elson, C. E. 1983. Effect of AMO 1681 on cholesterol and fatty acid metabolism in chicken and rats. Atherosclerosis. 46:202-216.
40 Quin, D. E. and Haslam, J. M. 1979. The effects of catabolite depression on the accumulation of steryl esters and the activity of $\beta$-hydro-xymethylutaryl-CoA reductase activity in saccharomyces cerevisiae. J. Gen. Microbiology. 111:343-351.   DOI   ScienceOn
41 Qureshi, A. A., Abuirmeileh, N., Din, Z. Z., Ahmad, Y., Burger, W. C. and Elson, C. E. 1983. Suppression of cholesterol systhesis and reduction of LDL cholesterol by dietary ginseng and its fractions in chichen liver. Atherosclerosis. 48:81-94.   DOI   ScienceOn
42 Reaven, G. M. 1993. Role of insuline resistance in human disease (syndrome); an expanded definition. Annu. Rev. Med. 44:121-131.   DOI   ScienceOn