Browse > Article

Highly Efficient and Low Power FIR Filter Chip for PRML Read Channel  

Jin Yong, Kang (Samsung Electro-Mechanics)
Byung Gak, Jo (Agency for Defense Development)
Myung Hoon, Sunwoo (Electrical and Computer Engineering, Ajou Univ)
Publication Information
Abstract
This paper proposes a high efficient and low power FIR filter chip for partial-response maximum likelihood (PRML) disk drive read channels; it is a 6-bit, 8-tap digital FIR filter. The proposed filter employs a parallel processing architecture and consists of 4 pipeline stages. It uses the modified Booth algorithm for multiplication and compressor logic for addition. CMOS pass-transistor logic is used for low power consumption and single-rail logic is used to reduce the chip area. The proposed filter is actually implemented and the chip dissipates 120mV at 100MHz, uses a 3.3V power supply and occupies 1.88 ${\times}$ 1.38 $\textrm{mm}^2$. The implemented filter requires approximately 11.7% less power compared with the existing architectures that use the similar technology.
Keywords
FIR filter; CMOS pass-transistor; PRML; read channels; disk drives.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. R. Choi, L. H. Jang, S. W. Jung, and J. H. Choi, 'Structureed design of a 288-Tap FIR filter by optimized partial product tree compression,' IEEE J. Solid-State Circuits, vol. 32, pp. 468-475, Mar. 1997   DOI   ScienceOn
2 R.Zimmermann and W. Fichtner, 'Low-power logic styles: CMOS versus pass-transistor logic,' IEEE J. Solid-State Circuits, vol. 32, pp. 1079-1090, July 1997   DOI   ScienceOn
3 N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and Y. Nakagome, 'A 4.4ns CMOS $54{\times} 54-b$ multiplier using pass-transistor multiplexer,' IEEE J. Solid-State Circuits, vol. 30, pp. 251-256, Mar. 1995   DOI   ScienceOn
4 G. Goto, A. Inoue, R. Ohe, S. Kashiwakura, S. Mitarai, T. Tsuru, and T. Izawa, 'A 4.1-ns compact 54x54-b multiplier utilizing sign-select booth encoders,' IEEE J. Solid-State Circuits, vol. 32, pp. 1676-1681, Nov. 1997   DOI   ScienceOn
5 H. J. Ki, W. H. Paik, I. C. Hwang, K. Y. Chae, J. S. Yoo, and S. W. Kim, 'A low power 8-Tap digital FIR filter for PRML read channels,' Int. J. Electron., vol. 87, pp. 445-455, Apr. 2000   DOI
6 D. Moloney, J. O'Brien, E. O'Rourke, and F. Brianti, 'Low power 200-Msps, area-efficient, five-tap programmable FIR filter,' IEEE J. Solid-State Circuits, vol. 33, pp. 1134-1138, July 1998   DOI   ScienceOn
7 D. J. Pearson, S. K. Reynolds, A. C. Megdanis, S. Gowda, K. R. Wrenner, M. Immediato, R. L. Galbraith, and H. J. Shin, 'Digital FIR filters for high speed PRMIL disk read channels,' IEEE J. Solid-State Circuits, vol. 30, pp. 1517-1522, Dec. 1905   DOI   ScienceOn
8 H. Kobayashi and D. Tang, 'Application of probabilistic decoding to magnetic recording systems,' IBM J. Res. Dev., pp. 368-375, Jan. 1971
9 C. S. H. Wong, J. C. Rudell, G. T. Uehara, and P. R. Gray, 'A 50 MHz eight-tap adaptive equalizer for partial-response channels,' IEEE J. Solid-State Circuits, vol. 30, pp. 228-233, Mar. 1905   DOI   ScienceOn
10 J. D. Coker, R. L. Galbraith, G. J. Kerwin, and J. W. Rae, 'Implementation of PRML in a rigid disk drive,' IEEE Trans. Magn., vol. 27, pp. 4538-4543, Nov. 1991   DOI   ScienceOn
11 A. Taratorin, PRML: A Practical Approach. Mountain View, CA: Guzik Technical Enterprises, 1995
12 M. H. Sunwoo, B. G. Jo, and J. Y. Kang, 'Finite impulse response filter for partial response maximum likelihood hard disk drive,' Korea Patent Application # 10-2001-0007555, Feb. 15, 2001
13 Makoto Suzuki, 'A 1.5ns 32 b CMOS ALU in Double Pass-Transistor LOgic' IEEE journal of Solid-State circuits. vol. 28, NO. 11, pp. 1145-1150, November 1993   DOI   ScienceOn
14 B. G. Jo, J. Y. Kang, and Myung H. Sunwoo, 'A low power and area efficient FIR filter chip for PRML read channels,' in Proc. Int. Symp. Circuits Syst., May 2001, vol. 4, pp. 606-609   DOI
15 J, Y. Kang, B. G. Jo and Myung H. Sunwoo, 'Implementation of an efficient FIR filter chip for PRML read channels,' in Proc. IEEE Workshop on Signal Processing Systems Design and Implementation, Oct. 2001, pp. 201-208   DOI
16 K. Muhammad, R. B. Staszewski, and P. T. Balsara, 'Speed, power, area, and latency tradeoffs in adaptive FIR filtering for PRML read channels,' IEEE Trans. on VLSI syst. vol. 9, pp. 42-51, Feb, 2001   DOI   ScienceOn
17 L. E. Thon, P. Sutardja, F. S. Lai, and G. Coleman, 'A 240 MHz 8-tap digital FIR filter for disk-drive read-channels,' IEEE ISSCC Dig. Tech. Papers, pp. 82-83, Feb. 1995   DOI
18 R. D. Cideciyan, F. Dolivo, and R. Hermann, 'A PRML system for digital magnetic recording,' IEEE J. Select. Areas Commun., vol. 10, pp.38-56, Jan. 1992.   DOI   ScienceOn
19 Seagate Technology. (2001). PRML: Seagate Uses Space Age Technology Today. [Online]. Available: http://www.seagate.com/support/kb/disc/tp/prml.html
20 J. Hong, R. Wood, and D. Chan, 'An experimental 180 Mb/sec PRML channel for magnetic recording,' IEEE. Trans. Magn., vol. 27, pp. 4532-4537, Nov. 1991   DOI   ScienceOn
21 E. Grochowski and R. F., Hoyt, 'Future trends in hard disk drives,' IEEE Trans. Magn., vol. 32, pp. 1850-1854, May 1995   DOI   ScienceOn
22 T. D. Howell, W. L. Abbott, and K D. Fisher, 'Advanced read channels for magnetic disk drives,' IEEE. Trans. Magn., vol. 30, pp. 3807-3812, Nov. 1994   DOI   ScienceOn