1 |
Doswell Ⅲ, C.A., 1984, 'A Kinematic Analysis of Frontogenesis Associated with a Nondivergent Vortex,' Journal of the Atmospheric Sciences, 41, pp. 1242-1248
DOI
|
2 |
Hirt, C.W. and Nichols, B.D., 1981, 'Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,' Journal of Computational Physics, 39, pp. 201-225
DOI
ScienceOn
|
3 |
Borthwick, A.G.L., Cruz Leon, S. and Jozsa, J., 2001, 'The Shallow Flow Equations Solved on Adaptive Quadtree Grids,' International Journal for Numerical Methods in Fluids, 37, pp. 691-719
DOI
ScienceOn
|
4 |
Hundsdorfer, W. and Trompert, R. A., 1994, 'Method of Lines and Direct Discretization: a Comparison for Linear Advection,' Applied Numerical Mathematics, 13, pp. 469-490
DOI
ScienceOn
|
5 |
Osher, S. and Sethian, J.A., 1988, 'Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,' Computer Physics Communications, 79, pp.12-49
DOI
ScienceOn
|
6 |
Rancic, M., 1992, 'Semi-Lagrangian Piecewise Biparabolic Scheme for Two-Dimensional Horizontal Advection of a Passive Scalar,' Monthly Weather Review, 120, pp. 1394-1406
DOI
|
7 |
Yoon ,S. Y. and Yabe, T., 1999, 'The Unified Simulation for Incompressible and Compressible Flow by the Predictor-Corrector Scheme Based on the CIP Method,' Computer Physics Communications, 119, pp. 149-158
DOI
ScienceOn
|
8 |
Zalesak, S.T., 1979, 'Fully Multi-Dimensional Flux-Corrected Transport Algorithms for Fluids,' Journal of Computational Physics, 31, pp. 335-362
DOI
ScienceOn
|
9 |
Nair, R., Cote, J. and Staniforth, A., 1999, 'Monotonic Cascade Interpolation for Semi-Lagrangian Advection,' Q. J. R. Meteorol. Sci., 125, pp. 197-212
DOI
ScienceOn
|
10 |
Nakamura, T., Tanaka, R., Yabe, T. and Takizawa, K., 2001, 'Exactly Conservative Semi-Lagrangian Scheme for Multi-Dimensional Hyperbolic Equations with Directional Splitting Technique,' Journal of computational physics, 174, pp. 171-207
DOI
ScienceOn
|
11 |
Bermejo, R. and Staniforth, A., 1992, 'The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes,' Monthly Weather Review, 120, pp. 2623-2632
DOI
|
12 |
Yabe, T. and Aoki, T., 1991, 'A Universal Solver for Hyperbolic Equations by Cubic-Polynomial Interpolation,' Computer Physics Communications, 66, pp. 219-232
DOI
ScienceOn
|
13 |
Berger, M.J. and Oliger, J., 1984, 'Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,' Journal of Computational Physics, 53, pp. 484-512
DOI
ScienceOn
|