Browse > Article
http://dx.doi.org/10.5851/kosfa.2022.e11

Roles of Milk Fat Globule Membrane on Fat Digestion and Infant Nutrition  

Chai, Changhoon (Department of Applied Animal Science, Kangwon National University)
Oh, Sejong (Devision of Animal Science, Chonnam National University)
Imm, Jee-Young (Department of Foods and Nutrition, Kookmin University)
Publication Information
Food Science of Animal Resources / v.42, no.3, 2022 , pp. 351-371 More about this Journal
Abstract
Milk fats are present as globules emulsified in the aqueous phase of milk and stabilized by a delicate membrane architecture called milk fat globule membrane (MFGM). The unique structure and composition of the MFGM play an important role in fat digestion and the metabolic programming of neonates. The objective of this review is to compare the structure, composition, and physicochemical characteristics of fat globules in human milk, bovine milk, and infant formula. It provides an overview of the fat digestion process and enzymes in healthy infants, and describes the possible roles of the MFGM in association with factors affecting fat digestion. Lastly, the health benefits of the MFGM on infant nutrition and future perspectives are discussed with a focus on brain development, metabolic response, and gut health.
Keywords
milk fat globule membrane; human milk; infant formula; digestion; health benefit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mather IH. 2000. A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J Dairy Sci 83:203-247.   DOI
2 Menard O, Ahmad S, Rousseau F, Briard-Bion V, Gaucheron F, Lopez C. 2010. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem 120:544-551.   DOI
3 Michalski MC, Soares AF, Lopez C, Leconte N, Briard V, Geloen A. 2006. The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. Eur J Nutr 45:215-224.   DOI
4 Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. 2019. Dietary polar lipids and cognitive development: A narrative review. Adv Nutr 10:1163-1176.   DOI
5 Ambrozej D, Dumycz K, Dziechciarz P, Ruszczynski M. 2021. Milk fat globule membrane supplementation in children: Systematic review with meta-analysis. Nutrients 13:714.   DOI
6 Brink LR, Herren AW, McMillen S, Fraser K, Agnew M, Roy N, Lonnerdal B. 2020. Omics analysis reveals variations among commercial sources of bovine milk fat globule membrane. J Dairy Sci 103:3002-3016.   DOI
7 Fontecha J, Brink L, Wu S, Pouliot Y, Visioli F, Jimenez-Flores R. 2020. Sources, production, and clinical treatments of milk fat globule membrane for infant nutrition and well-being. Nutrients 12:1607.   DOI
8 Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. 2015. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 10:81-98.   DOI
9 Le Huerou-Luron I, Bouzerzour K, Ferret-Bernard S, Menard O, Le Normand L, Perrier C, Le Bourgot C, Jardin J, Bourlieu C, Carton T, Le Ruyet P, Cuinet I, Bonhomme C, Dupont D. 2018. A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. Eur J Nutr 57:463-476.   DOI
10 Lecomte M, Bourlieu C, Meugnier E, Penhoat A, Cheillan D, Pineau G, Loizon E, Trauchessec M, Claude M, Menard O, Geloen A, Laugerette F, Michalski MC. 2015. Milk polar lipids affect in vitro digestive lipolysis and postprandial lipid metabolism in mice. J Nutr 145:1770-1777.   DOI
11 Anto L, Warykas SW, Torres-Gonzalez M, Blesso CN. 2020. Milk polar lipids: Underapprecoated lipids with emerging health benefits. Nutrients 12:1001.   DOI
12 Baumgartner S, van de Heijning BJM, Acton D, Mensink RP. 2017. Infant milk fat droplet size and coating affect postprandial responses in healthy adult men: A proof-of-concept study. Eur J Clin Nutr 71:1108-1113.   DOI
13 Bhinder G, Allaire JM, Garcia C, Lau JT, Chan JM, Ryz NR, Bosman ES, Graef FA, Crowley SM, Celiberto LS, Berkmann JC, Dyer RA, Jacobson K, Surette MG, Innis SM, Vallance BA. 2017. Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Sci Rep 7:45274.   DOI
14 Bezirtzoglou E, Tsiotsias A, Welling GW. 2011. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17:478-482.   DOI
15 Oborina EM, Yappert MC. 2003. Effect of sphingomyelin versus dipalmitoylphosphatidylcholine on the extent of lipid oxidation. Chem Phys Lipids 123:223-232.   DOI
16 Ali AH, Wei W, Wang X. 2021. A review of milk gangliosides: Occurrence, biosynthesis, identification, and nutritional and functional significance. Int J Dairy Technol 75:21-45.
17 Azarcoya-Barrera J, Field CJ, Goruk S, Makarowski A, Curtis JM, Pouliot Y, Jacobs RL, Richard C. 2021. Buttermilk: An important source of lipid soluble forms of choline that influences the immune system development in Spargue-Dawley rat offspring. Eur J Nutr 60:2807-2818.   DOI
18 Blackberg L, Hernell O, Olivecrona T. 1981. Hydrolysis of human milk fat globules by pancreatic lipase: Role of colipase, phospholipase A2, and bile salts. J Clin Invest 67:1748-1752.   DOI
19 Bourlieu C, Michalski MC. 2015. Structure-function relationship of the milk fat globule. Curr Opin Clin Nutr Metab Care 18:118-127.   DOI
20 Bourlieu C, Menard O, De La Chevasnerie A, Sams L, Rousseau F, Madec MN. Robert B, Deglaire A, Pezennec S, Bouhallab S, Carriere F, Dupont D. 2015. The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chem 182:224-235.   DOI
21 Carelli AA, Brevedan MIV, Crapiste GH. 1997. Quantitative determination of phospholipids in sunflower oil. J Am Oil Chem Soc 74:511-514.   DOI
22 Cheong LZ, Jiang C, He X, Song S, Lai OM. 2018. Lipid profiling, particle size determination, and in vitro simulated gastrointestinal lipolysis of mature human milk and infant formula. J Agric Food Chem 66:12042-12050.   DOI
23 Cilla A, Diego Quintaes K, Barbera R, Alegria A. 2016. Phospholipids in human milk and infant formulas: Benefits and needs for correct infant nutrition. Crit Rev Food Sci Nutr 56:1880-1892.   DOI
24 Coliva G, Lange M, Colombo S, Chervet JP, Domingues MR, Fedorova M. 2020. Sphingomyelins prevent propagation of lipid peroxidation-LC-MS/MS evaluation of inhibition mechanisms. Molecules 25:1925.   DOI
25 Lonnerdal B. 2014. Infant formula and infant nutrition: Bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nutr 99:712S-717S.   DOI
26 Billeaud C, Puccio G, Saliba E, Guillois B, Vaysse C, Pecquet S, Steenhout P. 2014. Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: A randomized controlled multicenter non-inferiority trial in healthy term infants. Clin Med Insights Pediatr 8:51-60.
27 Rueda R, Sabatel JL, Maldonado J, Molina-Font JA, Gil A. 1998. Addition of gangliosides to an adapted milk formula modifies levels of fecal Escherichia coli in preterm newborn infants. J Pediatr 133:90-94.   DOI
28 Li Y, Mu H, Andersen JET, Xu X, Meyer O, Orngreen A. 2010. New human milk fat substitutes from butterfat to improve fat absorption. Food Res Int 43:739-744.   DOI
29 Liang L, Zhang X, Wang X, Jin Q, McClements DJ. 2018. Influence of dairy emulsifier type and lipid droplet size on gastrointestinal fate of model emulsions: In vitro digestion study. J Agric Food Chem 66:9761-9769.   DOI
30 Lindquist S, Hernell O. 2010. Lipid digestion and absorption in early life: An update. Curr Opin Clin Nutr Metab Care 13:314-320.   DOI
31 Yuan T, Zhu X, Mu G, Qian F, Xiong H. 2020. Effects of chemical composition and microstructure in human milk and infant formulas on lipid digestion. J Agric Food Chem 68:5462-5470.   DOI
32 Eckhardt ERM, Wang DQH, Donovan JM, Carey MC. 2002. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology 122:948-956.   DOI
33 El-Salam M, El-Shibiny S. 2020. Milk fat globule membrane: An overview with particular emphasis on its nutritional and health benefits. Int J Dairy Technol 73:639-655.   DOI
34 Fong BY, Norris CS, MacGibbon AKH. 2007. Protein and lipid composition of bovine milk-fat-globule membrane. Int Dairy J 17:275-288.   DOI
35 Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, Pevsner-Fischer M, Shapiro H, Christ A, Harmelin A, Halpern Z, Latz E, Flavell RA, Amit I, Segal E, Elinav E. 2015. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:1428-1443.   DOI
36 Li T, Gao J, Du M, Mao X. 2018a. Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. J Funct Foods 47:56-65.   DOI
37 Tunick MH, Ren DX, Van Hekken DL, Bonnaillie L, Paul M, Kwoczak R, Tomasula PM. 2016. Effect of heat and homogenization on in vitro digestion of milk. J Dairy Sci 99:4124-4139.   DOI
38 Xiao X, Mukherjee A, Ross LE, Lowe ME. 2011. Pancreatic lipase-related protein-2 (PLRP2) can contribute to dietary fat digestion in human newborns. J Biol Chem 286:26353-26363.   DOI
39 Zhang Q, Ye L, Xin F, Zhou J, Cao B, Dong Y, Qian L. 2021. Milk fat globule membrane supplementation during suckling ameliorates maternal high fat diet-induced hepatic steatosis in adult male offspring of mice. J Nutr 151:1487-1496.   DOI
40 Zheng H, Jimenez-Flores R, Everett DW. 2013. Bovine milk fat globule membrane proteins are affected by centrifugal washing processes. J Agric Food Chem 61:8403-8411.   DOI
41 Rosqvist F, Smedman A, Lindmark-Mansson H, Paulsson M, Petrus P, Straniero S, Rudling M, Dahlman I, Riserus U. 2015. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: A randomized study. Am J Clin Nutr 102:20-30.   DOI
42 Qu X, Hu H, Wang Y, Cao C, Li H, Liu X, Yu J. 2019. Proteomics analysis of milk fat globule membrane enriched materials derived from by-products during different stages of milk-fat processing. LWT-Food Sci Technol 116:108531.   DOI
43 Rajendran L, Simons K. 2005. Lipid rafts and membrane dynamics. J Cell Sci 118:1099-1102.   DOI
44 Richard C, Lewis ED, Goruk S, Wadge E, Curtis JM, Jacobs RL, Field CJ. 2017. Feeding a mixture of choline forms to lactating dams improves the development of the immune system in Sprague-Dawley rat offspring. Nutrients 9:567.   DOI
45 Zou X, Huang J, Jin Q, Guo Z, Liu Y, Cheong L, Xu X, Wang X. 2013. Lipid composition analysis of milk fats from different mammalian species: Potential for use as human milk fat substitutes. J Agric Food Chem 61:7070-7080.   DOI
46 Singh H. 2019. Symposium review: Fat globules in milk and their structural modifications during gastrointestinal digestion. J Dairy Sci 102:2749-2759.   DOI
47 Bernback S, Blackberg L, Hernell O. 1989. Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochim Biophys Acta 1001:286-293.   DOI
48 Sanchez-Juanes F, Alonso JM, Zancada L, Hueso P. 2009. Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. Int Dairy J 19:273-278.   DOI
49 Schneider N, Hauser J, Oliveira M, Cazaubon E, Mottaz SC, O'Neill BV, Steiner P, Deoni SCL. 2019. Sphingomyelin in brain and cognitive development: Preliminary data. Eneuro 6:ENEURO.0421-18.2019.
50 Lopez C, Cauty C, Rousseau F, Blot M, Margolis A, Famelart MH. 2017. Lipid droplets coated with milk fat globule membrane fragments: Microstructure and functional properties as a function of pH. Food Res Int 91:26-37.   DOI
51 Lopez C, Menard O. 2011. Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids Surf B Biointerfaces 83:29-41.   DOI
52 Luo J, Huang Z, Liu H, Zhang Y, Ren F. 2018. Yak milk fat globules from the Qinghai-Tibetan Plateau: Membrane lipid composition and morphological properties. Food Chem 245:731-737.   DOI
53 Li T, Gong H, Yuan Q, Du M, Ren F, Mao X. 2020. Supplementation of polar lipids-enriched milk fat globule membrane in high-fat diet-fed rats during pregnancy and lactation promotes brown/beige adipocyte development and prevents obesity in male offspring. FASEB J 34:4619-4634.   DOI
54 Ubbink J, Burbidge A, Mezzenga R. 2008. Food structure and functionality: A soft matter perspective. Soft Matter 4:1569-1581.   DOI
55 Tome-Carneiro J, Carmen Crespo M, Burgos-Ramos E, Tomas-Zapico C, Garcia-Serrano A, Castro-Gomez P, Venero C, Pereda-Perez I, Baliyan S, Valencia A, Fontecha J, Davalos A, Visioli F. 2018. Buttermilk and krill oil phospholipids improve hippocampal insulin resistance and synaptic signaling in aged rats. Mol Neurobiol 55:7285-7296.   DOI
56 Gallier S, Vocking K, Post JA, Van De Heijning B, Acton D, Van Der Beek EM, Van Baalen T. 2015. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surf B Biointerfaces 136:329-339.   DOI
57 Gallier S, Zhu XQ, Rutherfurd SM, Ye A, Moughan PJ, Singh, H. 2013b. In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. II. Upper digestive tract digestion. Food Chem 141:3215-3223.   DOI
58 Giuffrida F, Elmelegy IM, Thakkar SK, Marmet C, Destaillats F. 2014. Longitudinal evolution of the concentration of gangliosides GM3 and GD3 in human milk. Lipids 49:997-1004.   DOI
59 Smoczynski M, Staniewski B, Kielczewska K. 2012. Composition and structure of the bovine milk fat globule membrane-some nutritional and technological implications. Food Rev Int 28:188-202.   DOI
60 Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S, Poirot M, Record M. 2010. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51:2105-2120.   DOI
61 Turgeon SL, Brisson G. 2020. Symposium review: The dairy matrix-Bioaccessibility and bioavailability of nutrients and physiological effects. J Dairy Sci 103:6727-6736.   DOI
62 Ye A, Cui J, Singh H. 2011. Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk. J Dairy Sci 94:2762-2770.   DOI
63 Bourlieu C, Mahdoueni W, Paboeuf G, Gicquel E, Menard O, Pezennec S, Bouhallab S, Deglaire A, Dupont D, Carriere F, Vie V. 2020. Physico-chemical behaviors of human and bovine milk membrane extracts and their influence on gastric lipase adsorption. Biochimie 169:95-105.   DOI
64 Chichlowski M, Bokulich N, Harris CL, Wampler JL, Li F, Berseth CL, Rudolph C, Wu SS. 2021. Effect of bovine milk fat globule membrane and lactoferrin in infant formula on gut microbiome and metabolome at 4 months of age. Curr Dev Nutr 5:nzab027.   DOI
65 Hjerpsted J, Leedo E, Tholstrup T. 2011. Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. Am J Clin Nutr 94:1479-1484.   DOI
66 Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, Pierre JF, Miyoshi J, Sontag TJ, Cham CM, Reardon CA, Leone V, Chang EB. 2018. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23:458-469.e5.   DOI
67 Graves ELF, Beaulieu AD, Drackley JK. 2007. Factors affecting the concentration of sphingomyelin in bovine milk. J Dairy Sci 90:706-715.   DOI
68 Hageman JHJ, Keijer J, Dalsgaard TK, Zeper LW, Carriere F, Feitsma AL, Nieuwenhuizen AG. 2019. Free fatty acid release from vegetable and bovine milk fat-based infant formulas and human milk during two-phase in vitro digestion. Food Funct 10:2102-2113.   DOI
69 He X, McClorry S, Hernell O, Lonnerdal B, Slupsky CM. 2020. Digestion of human milk fat in healthy infants. Nutr Res 83:15-29.   DOI
70 He X, Parenti M, Grip T, Lonnerdal B, Timby N, Domellof M, Hernell O, Slupsky CM. 2019. Fecal microbiome and metabolome of infants fed bovine MFGM supplemented formula or standard formula with breast-fed infants as reference: A randomized controlled trial. Sci Rep 9:11589.   DOI
71 Lee H, German JB, Kjelden R, Lebrilla CB, Barile D. 2013. Quantitative analysis of gangliosides in bovine milk and colostrum-based dairy products by ultrahigh performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 61:9689-9696.   DOI
72 Casper C, Carnielli VP, Hascoet JM, Lapillonne A, Maggio L, Timdahl K, Olsson B, Vagero M, Hernell O. 2014. rhBSSL improves growth and LCPUFA absorption in preterm infants fed formula or pasteurized breast milk. J Pediatr Gastroenterol Nutr 59:61-69.   DOI
73 Guo Q, Bellissimo N, Rousseau D. 2017. The physical state of emulsified edible oil modulates its in vitro digestion. J Agric Food Chem 65:9120-9127.   DOI
74 Keenan TW, Heid HW, Stadler J, Jarasch ED, Franke WW. 1982. Tight attachment of fatty acids to proteins associated with milk lipid globule membrane. Eur J Cell Biol 26:270-276.
75 Rohrhofer J, Zwirzitz B, Selberherr E, Untersmayr E. 2021. The impact of dietary sphingolipids on intestinal microbiota and gastrointestinal immune homeostasis. Front Immunol 12:635704.   DOI
76 Golding M, Wooster TJ. 2010. The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 15:90-101.   DOI
77 Han L, Du M, Ren F, Mao X. 2021. Milk polar lipids supplementation to obese rats during pregnancy and lactation benefited skeletal outcomes of male offspring. Mol Nutr Food Res 65:2001208.   DOI
78 Pan Y, Liu L, Tian S, Li X, Hussain M, Li C, Zhang L, Zhang Q, Leng Y, Jiang S, Liang S. 2022. Comparative analysis of interfacial composition and structure of fat globules in human milk and infant formulas. Food Hydrocoll 124:107290.   DOI
79 Lopez C, Cauty C, Guyomarc'h F. 2015. Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Sci Technol 95:863-893.   DOI
80 Lee H, Slupsky CM, Heckmann AB, Christensen B, Peng Y, Li X, Hernell O, Lonnerdal B, Li Z. 2021. Milk fat globule membrane as a modulator of infant metabolsim and gut microbiota: A formula supplement narrowing the metabolic differences between breastfed and formula-fed infants. Mol Nutr Food Res 65:2000603.   DOI
81 Lu N, Wang J, Chen Z, Zhang X, Chen C, Wang S. 2021. The effect of adding phospholipids before homogenization on the properties of milk fat globules. LWT-Food Sci Technol 146:111659.   DOI
82 Liang L, Qi C, Wang X, Jin Q, McClements DJ. 2017. Influence of homogenization and thermal processing on the gastrointestinal fate of bovine milk fat: In vitro digestion study. J Agric Food Chem 65:11109-11117.   DOI
83 Choe J, Oh B, Choe E. 2014. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion. J Food Sci 79:C2203-C2208.   DOI
84 Dewettinck K, Rombaut R, Thienpont N, Le TT, Messens K, Van Camp J. 2008. Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J 18:436-457.   DOI
85 Fondaco D, AlHasawi F, Lan Y, Ben-Elazar S, Connolly K, Rogers MA. 2015. Biophysical aspects of lipid digestion in human breast milk and SimilacTM infant formulas. Food Biophys 10:282-291.   DOI
86 Li F, Wu SS, Berseth CL, Harris CL, Richards JD, Wampler JL, Zhuang W, Cleghorn G, Rudolph CD, Liu B, Shaddy DJ, Colombo J. 2019. Improved neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: A randomized, controlled trial. J Pediatr 215:24-31.e8.   DOI
87 Li T, Gao J, Du M, Song J, Mao X. 2018b. Milk fat globule membrane attenuates high-fat diet-induced obesity by inhibiting adipogenesis and increasing uncoupling protein 1 expression in white adipose tissue of mice. Nutrients 10:331.   DOI
88 Liu L, Pan Y, Zhang X, Zhang Y, Li X. 2021. Effect of particle size and interface composition on the lipid digestion of droplets covered with membrane phospholipids. J Agric Food Chem 69:159-169.   DOI
89 Lopez C, Cauty C, Guyomarc'h F. 2019. Unraveling the complexity of milk fat globules to tailor bioinspired emulsions providing health benefits: The key role played by the biological membrane. Eur J Lipid Sci Technol 121:1800201.   DOI
90 Luo J, Liu L, Liu T, Shen Q, Liu C, Zhou H, Ren F. 2020. Simulated in vitro infant gastrointestinal digestion of yak milk fat globules: A comparison with cow milk fat globules. Food Chem 314:126160.   DOI
91 Zhang H, Zhao H, Zhang Y, Shen Y, Su H, Jin J, Jin Q, Wang X. 2018. Characterization of positional distribution of fatty acids and triacylglycerol molecular compositions of marine fish oils rich in omega-3 polyunsaturated fatty acids. BioMed Res Int 2018:3529682.   DOI
92 Mun S, Decker EA, McClements DJ. 2007. Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Res Int 40:770-781.   DOI
93 Narita T, Naganuma T, Sase Y, Kihara A. 2016. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases. Sci Rep 6:25469.   DOI
94 Nguyen TTP, Bhandari B, Cichero J, Prakash S. 2018. In vitro lipolysis of dairy and soy based infant formula. Food Res Int 106:696-705.   DOI
95 Rombaut R, Dewettinck K, Van Camp J. 2007. Phospho- and sphingolipid content of selected dairy products as determined by HPLC coupled to an evaporative light scattering detector (HPLC-ELSD). J Food Compos Anal 20:308-312.   DOI
96 Mathiassen JH, Nejrup RG, Frokiaer H, Nilsson A, Ohlsson L, Hellgren LI. 2015. Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity. Eur J Lipid Sci Technol 117:1522-1539.   DOI
97 Nilsson A. 2016. Role of sphingolipids in infant gut health and immunity. J Pediatr 173:S53-S59.   DOI
98 Norris GH, Porter CM, Jiang C, Blesso CN. 2017. Dietary milk sphingomyelin reduces systemic inflammation in diet-induced obese mice and inhibits LPS activity in macrophages. Beverages 3:37.   DOI
99 Pham AC, Peng KY, Salim M, Ramirez G, Hawley A, Clulow AJ, Boyd BJ. 2020. Correlating digestion-driven self-assembly in milk and infant formulas with changes in lipid composition. ACS Appl Bio Mater 3:3087-3098.   DOI
100 Yu Z, Li Y, Niu Y, Tang Q, Wu J. 2021. Milk fat globule membrane enhances colonic-mucus-barrier function in a rat model of short-bowel syndrome. JPEN J Parenter Enteral Nutr 45:916-925.   DOI
101 Zhang L, Chichlowski M, Gross G, Holle MJ, Lbarra-Sanchez LA, Wang S, Miller MJ. 2020. Milk fat globule membrane protects Lactobacillus rhamnosus GG from bile stress by regulating exopolysaccharide production and biofilm formation. J Agric Food Chem 68:6646-6655.   DOI
102 Zhao J, Yi W, Liu B, Dai Y, Jiang T, Chen S, Wang J, Feng B, Qiao W, Liu Y, Zhou H, He J, Hou J, Chen L. 2022. MFGM components promote gut Bifidobacterium growth in infant and in vitro. Eur J Nutr 61:277-288.   DOI
103 Zhao L, Du M, Mao X. 2019. Change in interfacial properties of milk fat globules by homogenization and thermal processing plays a key role in their in vitro gastrointestinal digestion. Food Hydrocoll 96:331-342.   DOI
104 Reinhardt TA, Lippolis JD. 2006. Bovine milk fat globule membrane proteome. J Dairy Res 73:406-416.   DOI
105 Innis SM. 2011. Dietary triacylglycerol structure and its role in infant nutrition. Adv Nutr 2:275-283.   DOI
106 Gallier S, Cui J, Olson TD, Rutherfurd SM, Ye A, Moughan PJ, Singh H. 2013a. In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chem 141:3273-3281.   DOI
107 O'Mahony SM, McVey Neufeld KA, Waworuntu RV, Pusceddu MM, Manurung S, Murphy K, Strain C, Laguna MC, Peterson VL, Stanton C, Berg BM, Dinan TG, Cryan JF. 2020. The enduring effects of early-life stress on the microbiota-gut-brain axis are buffered by dietary supplementation with milk fat globule membrane and a prebiotic blend. Eur J Neurosci 51:1042-1058.   DOI
108 O'Muircheartaigh J, Dean DC III, Ginestet CE, Walker L, Waskiewicz N, Lehman K, Dirks H, Piryatinsky I, Deoni SCL. 2014. White matter development and early cognition in babies and toddlers. Hum Brain Mapp 35:4475-4487.   DOI
109 Pafumi Y, Lairon D, de la Porte PL, Juhel C, Storch J, Hamosh M, Armand M. 2002. Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. J Biol Chem 277:28070-28079.   DOI
110 Puente R, Garcia-Pardo LA, Rueda R, Gil A, Hueso P. 1994. Changes in ganglioside and sialic acid contents of goat milk during lactation. J Dairy Sci 77:39-44.   DOI
111 Sanchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. 2021. Breast milk: A source of functional compounds with potential application in nutrition and therapy. Nutrients 13:1026.   DOI
112 Hernell O, Blackberg L. 1994. Human milk bile salt-stimulated lipase: Functional and molecular aspects. J Pediatr 125:S56-S61.   DOI
113 Garcia C, Lutz NW, Confort-Gouny S, Cozzone PJ, Armand M, Bernard M. 2012. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chem 135:1777-1783.   DOI
114 Gomez-Cortes P, Juarez M, de la Fuente MA. 2018. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci Technol 81:1-9.   DOI
115 Gurnida DA, Rowan AM, Idjradinata P, Muchtadi D, Sekarwana N. 2012. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Hum Dev 88:595-601.   DOI
116 Innis SM, Dyer R, Nelson CM. 1994. Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 29:541-545.   DOI
117 Lamothe S, Remillard N, Tremblay J, Britten M. 2017. Influence of dairy matrices on nutrient release in a simulated gastrointestinal environment. Food Res Int 92:138-146.   DOI
118 Lordan R, Tsoupras A, Zabetakis I. 2017. Phospholipids of animal and marine origin: Structure, function, and antiinflammatory properties. Molecules 22:1964.   DOI
119 Affolter M, Grass L, Vanrobaeys F, Casado B, Kussmann M. 2010. Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. J Proteomics 73:1079-1088.   DOI
120 Abrahamse E, Minekus M, van Aken GA, van de Heijning B, Knol J, Bartke N, Oozeer R, van der Beek EM, Ludwig T. 2012. Development of the digestive system-experimental challenges and approaches of infant lipid digestion. Food Dig 3:63-77.   DOI
121 Jensen RG, Ferris AM, Lammi-Keefe CJ, Henderson RA. 1990. Lipids of bovine and human milks: A comparison. J Dairy Sci 73:223-240.   DOI
122 Johnson K, Ross L, Miller R, Xiao X, Lowe ME. 2013. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase. Pediatr Res 74:127-132.   DOI
123 Koletzko B. 2016. Human milk lipids. Annu Nutr Metab 69:Suppl 2:28-40.
124 Kosmerl E, Rocha-Mendoza D, Ortega-Anaya J, Jimenez-Flores R, Garcia-Cano I. 2021. Improving human health with milk fat globule membrane, lactic acid bacteria, and bifidobacteria. Microorganisms 9:341.   DOI
125 Tomarelli RM, Meyer BJ, Weaber JR, Bernhart FW. 1968. Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas. J Nutr 95:583-590.   DOI
126 Simons K, Vaz WLC. 2004. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269-295.   DOI
127 Slotte JP. 2016. The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids. Biochim Biophys Acta 1858:304-310.   DOI
128 Tanaka K, Hosozawa M, Kudo N, Yoshikawa N, Hisata K, Shoji H, Shinohara K, Shimizu T. 2013. The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain Dev 35:45-52.   DOI
129 Miklavcic JJ, Schnabl KL, Mazurak VC, Thomson ABR, Clandinin MT. 2012. Dietary ganglioside reduces proinflammatory signaling in the intestine. J Nutr Metab 2012:280286.   DOI
130 Singh H, Gallier S. 2017. Nature's complex emulsion: The fat globules of milk. Food Hydrocoll 68:81-89.   DOI