Browse > Article
http://dx.doi.org/10.5851/kosfa.2020.e98

Partial Characterization of an Anti-Listerial Bacteriocin from Enterococcus faecium CJNU 2524  

Yang, Jung-Mo (Major of Biotechnology, Korea National University of Transportation)
Moon, Gi-Seong (Major of Biotechnology, Korea National University of Transportation)
Publication Information
Food Science of Animal Resources / v.41, no.1, 2021 , pp. 164-171 More about this Journal
Abstract
Listeria monocytogenes is a representative foodborne pathogen and causes listeriosis. Enterococcus faecium CJNU 2524 was confirmed to produce a bacteriocin with anti-listerial activity. To establish optimal culture conditions for the production of the bacteriocin from E. faecium CJNU 2524, different media (MRS and BHI broth) and temperatures (25℃, 30℃, and 37℃) were investigated. The results showed that the optimal culture conditions were MRS broth and 25℃ or 30℃ temperatures. The crude bacteriocin was stable in a broad range of pH conditions (2.0-10.0), temperatures (60℃-100℃), and organic solvents (methanol, ethanol, acetone, acetonitrile, and chloroform). The bacteriocin activity was abolished when treated with protease but not α-amylase or lipase, indicating the proteinaceous nature of the bacteriocin. Finally, the bacteriocin showed a bactericidal mode of action against L. monocytogenes. Therefore, it can be a biopreservative candidate for controlling L. monocytogenes in dairy and meat products.
Keywords
bacteriocin; Enterococcus faecium; Listeria monocytogenes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Khelissa S, Chihib NE, Gharsallaoui A. 2020. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Arch Microbiol (in press). doi: 10.1007/s00203-020-02054-z   DOI
2 Komora N, Maciel C, Pinto CA, Ferreira V, Brandao TRS, Saraiva JMA, Castro SM, Teixeira P. 2020. Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiol 86:103315.   DOI
3 Kubasova I, Diep DB, Ovchinnikov KV, Laukova A, Strompfova V. 2020. Bacteriocin production and distribution of bacteriocin-encoding genes in enterococci from dogs. Int J Antimicrob Agents 55:105859.   DOI
4 Lecuit M. 2007. Human listeriosis and animal models. Microbes Infect 9:1216-1225.   DOI
5 Todorov SD, Kang HJ, Ivanova IV, Holzapfel WH. 2020. Bacteriocins from LAB and other alternative approaches for the control of Clostridium and Clostridiodes related gastrointestinal colitis. Front Bioeng Biotechnol 8:581778.   DOI
6 Vijayakumar PP, Muriana PM. 2017. Inhibition of Listeria monocytogenes on ready-to-eat meats using bacteriocin mixtures based. Foods 6:1-13.   DOI
7 Wieczorek K, Dmowska K, Osek J. 2012. Prevalence, characterization, and antimicrobial resistance of Listeria monocytogenes isolates from bovine hides and carcasses. Appl Environ Microbiol 78:2043-2045.   DOI
8 Aymerich T, Artigas MG, Garriga M, Monfort JM, Hugas M. 2000. Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J Appl Microbiol 88:686-694.   DOI
9 Lee J, Seo Y, Ha J, Kim S, Choi Y, Oh H, Lee Y, Kim Y, Kang J, Park E, Yoon Y. 2020. Influence of milk microbiota on Listeria monocytogenes survival during cheese ripening. Food Sci Nutr 8:5071-5076.   DOI
10 Leong D, Alvarez-Ordonez A, Jordan K. 2014. Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Front Microbiol 5:436.
11 Chan YC, Wiedmann M. 2008. Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit Rev Food Sci Nutr 49:237-253.   DOI
12 Chung DM, Kim KE, Jeong SY, Park CS, Ahn KH, Kim DH, Kang DO, Chun HK, Yoon BD, Koh HB, Kim HJ, Choi NS. 2011. Rapid concentration of some bacteriocin-like compounds using an organic solvent. Food Sci Biotechnol 20:1457-1459.   DOI
13 Cui Y, Zhang C, Wang Y, Shi J, Zhang L, Ding Z, Qu X, Cui H. 2012. Class IIa bacteriocins: Diversity and new developments. Int J Mol Sci. 13:16668-16707.   DOI
14 Daeschel MA. 1992. Procedures to detect antimicrobial activities of microorganisms. In Food biopreservatives of microbial origin. Ray B, Daeschel M. (ed). CRC Press, Boca Raton, FL, USA. pp. 57-80.
15 Farber JM, Peterkin PI. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476-511.   DOI
16 O'Connor PM, Kuniyoshi TM, Oliveira RP, Hill C, Ross RP, Cotter PD. 2020. Antimicrobials for food and feed; a bacteriocin perspective. Curr Opin Biotechnol 61:160-167.   DOI
17 Lim JY, Lee CL, Kim GH, Bang YJ, Rhim JW, Yoon KS. 2020. Using lactic acid bacteria and packaging with grapefruit seed extract for controlling Listeria monocytogenes growth in fresh soft cheese. J Dairy Sci 103:8761-8770.   DOI
18 Maertens de Noordhout C, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J, Kirk M, Havelaar A, Speybroeck N. 2014. The global burden of listeriosis: A systematic review and meta-analysis. Lancet Infect Dis 14:1073-1082.   DOI
19 Nyarko EB, Donnelly CW. 2015. Listeria monocytogenes: Strain heterogeneity, methods, and challenges of subtyping. J Food Sci 80:M2868-M2878.   DOI
20 Pandey P, Hansmann UHE, Wang F. 2020. Altering the solubility of the antibiotic candidate nisin: A computational study. ACS Omega 5:24854-24863.   DOI
21 Qiao X, Du R, Wang Y, Han Y, Zhou Z. 2020. Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. Int J Biol Macromol 144:151-159.   DOI
22 Ibarra-Sanchez LA, El-Haddad N, Mahmoud D, Miller MJ, Karam L. 2020. Invited review: Advances in nisin use for preservation of dairy products. J Dairy Sci 103:2041-2052.   DOI
23 Gabrielsen C, Brede DA, Nes IF, Diep DB. 2014. Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80:6854-6862.   DOI
24 Henderson LO, Erazo Flores BJ, Skeens J, Kent D, Murphy SI, Wiedmann M, Guariglia-Oropeza V. 2020. Nevertheless, she resisted - Role of the environment on Listeria monocytogenes sensitivity to nisin treatment in a laboratory cheese model. Front Microbiol 11:635.   DOI
25 Heredia N, Garcia S. 2018. Animals as sources of food-borne pathogens: A review. Anim Nutr 4:250-255.   DOI
26 Yu HH, Song MW, Song YJ, Lee NK, Paik HD. 2019. Antibacterial effect of a mixed natural preservative against Listeria monocytogenes on lettuce and raw pork loin. J Food Prot 82:2001-2006.   DOI
27 Indrawattana N, Nibaddhasobon T, Sookrung N, Chongsa-Nguan M, Tungtrongchitr A, Makino S, Tungyong W, Chaicumpa W. 2011. Prevalence of Listeria monocytogenes in raw meats marketed in Bangkok and characterization of the isolates by phenotypic and molecular methods. J Health Popul Nutr 29:26-38.
28 Kale SB, Kurkure NV, Doijad SP, Poharkar KV, Garg S, Rawool DB, Barbuddhe SB. 2017. Variations in stress tolerance abilities of diverse Listeria monocytogenes isolates. Int J Curr Microbiol Appl Sci 6:2246-2258.   DOI
29 Kang JH, Lee MS. 2005. Characterization of a bacteriocin produced by Enterococcus faecium GM-1 isolated from an infant. J Appl Microbiol 98:1169-1176.   DOI