Browse > Article
http://dx.doi.org/10.5851/kosfa.2020.e34

Detection, Characterization and Antibiotic Susceptibility of Clostridioides (Clostridium) difficile in Meat Products  

Muratoglu, Karlo (Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa)
Akkaya, Esra (Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa)
Hampikyan, Hamparsun (Faculty of Fine Arts, Department of Gastronomy and Culinary Arts, Beykent University)
Bingol, Enver Baris (Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa)
Cetin, Omer (Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa)
Colak, Hilal (Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa)
Publication Information
Food Science of Animal Resources / v.40, no.4, 2020 , pp. 578-587 More about this Journal
Abstract
Clostridioides (Clostridium) difficile is a Gram (+), anaerobic, spore forming, rod shaped bacterium that can produce toxin. The objective of this study is to reveal the presence of C. difficile in meat products, to analyze the ribotype diversity by PCR and to evaluate the antibiotic susceptibility of isolated strains. The organism was isolated in 22 out of 319 (6.9%) examined meat product samples and 9 out of 22 (40.9%) isolates were identified as RT027 and all isolates had the ability of toxin production. In terms of antibiotic susceptibility, all isolates were susceptive to amoxicillin-clavulanic acid, tetracycline and vancomycin and 21 (95.4%) isolates to metronidazole. On the other hand, imipenem and cefotaxim resistance was observed in all. In conclusion, the results of this comprehensive study conducted in Turkey deduced the presence of C. difficile in different meat products. Therefore, these products can be evaluated as a potential contamination source of C. difficile from animals to humans especially for elders, youngsters, long terms wide spectrum antibiotic used and immuno-suppressed individuals.
Keywords
Clostridium difficile; meat products; ribotype; antibiotic susceptibility; Clostridium difficile toxin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 De Boer E, Zwartkruis-Nahuis A, Heuvelink AE, Hurmanus C, Kuijper EJ. 2011. Prevalance of Clostridium difficile in retailed meat in the Netherlands. Int J Food Microbiol 144:561-564.   DOI
2 Deng K, Plaza-Garrido A, Torres JA, Paredes-Sabja D. 2015. Survival of Clostridium difficile spores at low temperatures. Food Microbiol 46:218-221.   DOI
3 Drudy D, Fanning S, Kyne L. 2007. Toxin A-negative, toxin B-positive Clostridium difficile. Int J Infect Dis 11:5-10.   DOI
4 Ersoz SS, Cosansu S. 2018. Prevalence of Clostridium difficile isolated from beef and chicken meat products in Turkey. Korean J Food Sci Anim Resour 38:759-767.   DOI
5 Esfandiari Z, Weese S, Ezzatpanah H, Jalali M, Chamani M. 2014. Occurrence of Clostridium difficile in seasoned hamburgers and seven processing plants in Iran. BMC Microbiol 14:283.   DOI
6 European Committee for Antimicrobial Susceptibility Testing [EUCAST]. 2019. Clinical breakpoint - bacteria (v 9.0). EUCAST, Basel, Switzerland. p 72.
7 Hampikyan H, Bingol EB, Muratoglu K, Akkaya E, Cetin O, Colak H. 2018. The prevalence of Clostridium difficile in cattle and sheep carcasses and the antibiotic susceptibility of isolates. Meat Sci 139:120-124.   DOI
8 Harvey RB, Norman KN, Andrews K, Norby B, Hume ME, Scanlan CM, Hardin MD, Scott HM. 2011. Clostridium difficile in retail meat and processing plants in Texas. J Vet Diagn Investig 23:807-811.   DOI
9 Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, Wewalka A, Allerberger F, Kuijper EJ. 2008. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol 57:1377-1382.   DOI
10 Jobstl M, Heuberger S, Indra A, Nepf R, Kofer J, Wagner M. 2010. Clostridium difficile in raw products of animal origin. Int J Food Microbiol 138:172-175.   DOI
11 Simango C, Mwakurudza S. 2008. Clostridium difficile in broiler chickens sold at market places in Zimbabwe and their antimicrobial susceptibility. Int J Food Microbiol 124:268-270.   DOI
12 Rodriguez C, Taminiau B, Avesani V, van Broeck J, Delmee M, Daube G. 2014. Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains isolated from retail meat and humans in Belgium. Food Microbiol 42:166-171.   DOI
13 Rodriguez C, Taminiau B, van Broeck J, Avesani V, Delmee M, Daube G. 2012. Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 18:621-625.   DOI
14 Romano V, Albanese F, Dumontet S, Krovacek K, Petrini O, Pasquale V. 2012. Prevalence and genotypic characterization of Clostridium difficile from ruminants in Switzerland. Zoonoses Public Health 59:545-548.   DOI
15 Songer JG, Trinh HT, Killgore GE, Thompson AD, McDonald LC, Limbago BM. 2009. Clostridium difficile in retail meat products USA. Emerg Infect Dis 15:819-821.   DOI
16 Stubbs S, Rupnik M, Gibert M, Brazier J, Duerden B, Popoff M. 2000. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 186:307-312.   DOI
17 Susick EK, Putnam M, Bermudez DM, Thakur S. 2012. Longitudinal study comparing the dynamics of Clostridium difficile in conventional and antimicrobial free pigs at farm and slaughter. Vet Microbiol 157:172-178.   DOI
18 Thitaram SN, Frank JF, Siragusa GR, Bailey JS, Dargatz DA, Lombart JE, Haley CA, Lyon SA, Fedorka-Cray PJ. 2016. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms. Int J Food Microbiol 227:1-5.   DOI
19 Libby DB, Bearman G. 2009. Bacteremia due to Clostridium difficile: Review of the literature. Int J Infect Dis 13:e305-e309.   DOI
20 Lemee L, Dhalliun A, Testelin S, Mattrat MA, Maillard K, Lemeland JF, Pons JL. 2004. Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (Toxin A), and tcdB (Toxin B) genes for toxigenic culture of Clostridium difficile. J Clin Microbiol 42:5710-5714.   DOI
21 Metcalf D, Avery BP, Janecko N, Matic N, Reid-Smith R, Weese JS. 2011. Clostridium difficile in seafood and fish. Anaerobe 17:85-86.   DOI
22 Metcalf DS, Costa MC, Dew WMV, Weese JS. 2010. Clostridium difficile in vegetables, Canada. Lett App Microbiol 51:600-602.   DOI
23 Pasquale V, Romano V, Rupnik M, Capuano F, Bove D, Aliberti F, Krovacek K, Dumontet S. 2012. Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol 31:309-312.   DOI
24 Pelaez T, Alcala L, Blanco JL, Alvarez-Perez S, Marin M, Martin-Lopez A, Catalan P, Reigadas E, Garcia ME, Bouza E. 2013. Characterization of swine isolates of Clostridium difficile in Spain: A potential source of epidemic multidrug resistant strains? Anaerobe 22:45-49.   DOI
25 Von Abercron SMM, Karlsson F, Wigh GT, Wierup M, Krovacek K. 2009. Low occurrence of Clostridium difficile in retail ground meat in Sweden. J Food Prot 72:1732-1734.   DOI
26 Pires RN, Caurio CFB, Saldanha GZ, Martins AF, Pasqualotto AC. 2018. Clostridium difficile contamination in retail meat products in Brazil. Braz J Infect Dis 22:345-346.   DOI
27 Rahimi E, Afzali ZS, Baghbadorani ZT. 2015. Clostridium difficile in ready-to-eat foods in Isfahan and Shahrekord, Iran. Asian Pac J Trop Biomed 5:128-131.   DOI
28 Rodriguez C, Avesani V, Van Broeck J, Taminiau B, Delmee M, Daube G. 2013. Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int J Food Microbiol 166:256-262.   DOI
29 Troiano T, Harmanus C, Sanders IMJG, Pasquale V, Dumontet S, Capuano F, Romano V, Kuijper EJ. 2015. Toxigenic Clostridium difficile PCR ribotypes in edible marine bivalve molluscs in Italy. Int J Food Microbiol 208:30-34.   DOI
30 Varshney JB, Very KJ, Williams JL, Hegarty JP, Stewart DB, Lumadue J, Venkitanarayanan K, Jayarao BM. 2014. Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania. Foodborne Pathog Dis 11:822-829.   DOI
31 Clinical and Laboratory Standards Institute [CLSI]. 2018. Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI, Wayne, PA, USA.
32 Bidet P, Barbut F, Lalande V, Burghoer B, Petit JC. 1999. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 175:261-266.   DOI
33 Bouttier S, Barc MC, Felix B, Lambert S, Collignon A, Barbut F. 2010. Clostridium difficile in ground meat, France. Emerg Infect Dis 16:733-735.   DOI
34 Candel-Perez C, Ros-Berruezo G, Martinez-Gracia C. 2019. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol 77:118-129.   DOI
35 Curry SR, Marsh JW, Schlackman JL, Harrison LH. 2012. Prevalence of Clostridium difficile in uncooked ground meat products from Pittsburgh, Pennsylvania. App Environ Microbiol 78:4183-4186.   DOI
36 Weese JS, Reid-Smith RJ, Avery BP, Rousseau J. 2010. Detection and characterization of Clostridium difficile in retail chicken. Lett Appl Microbiol 50:362-365.   DOI