Browse > Article
http://dx.doi.org/10.5851/kosfa.2016.36.4.452

Inhibitory Effects of Synthetic Peptides Containing Bovine Lactoferrin C-lobe Sequence on Bacterial Growth  

Kim, Woan-Sub (Department of Animal Life and Environmental Science, Hankyong National University)
Ohashi, Midori (Research Faculty of Agriculture, Hokkaido University)
Shimazaki, Kei-ichi (Research Faculty of Agriculture, Hokkaido University)
Publication Information
Food Science of Animal Resources / v.36, no.4, 2016 , pp. 452-457 More about this Journal
Abstract
Lactoferrin is a glycoprotein with various biological effects, with antibacterial activity being one of the first effects reported. This glycoprotein suppresses bacterial growth through bacteriostatic or bactericidal action. It also stimulates the growth of certain kinds of bacteria such as lactic acid bacteria and bifidobacteria. In this study, Asn-Leu-Asn-Arg was selected and chemically synthesized based on the partial sequences of bovine lactoferrin tryptic fragments. Synthetic Asn-Leu-Asn-Arg suppressed the growth of Pseudomonas fluorescens, P. syringae and Escherichia coli. P. fluorescens is a major psychrotrophic bacteria found in raw and pasteurized milk, which decreases milk quality. P. syringae is a harmful infectious bacterium that damages plants. However, synthetic Asn-Leu-Asn-Arg did not inhibit the growth of Lactobacillus acidophilus. It is expected that this synthetic peptide would be the first peptide sequence from the bovine lactoferrin C-lobe that shows antibacterial activity.
Keywords
lactoferrin; antibacterial activity; L. acidophilus; P. fluorescens; P. syringae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baker, E. N., Baker, H. M., and Kidd, R. D. (2002) Lactoferrin and transferrin: Functional variations on a common structural framework. Biochem. Cell Biol. 80, 27-34.   DOI
2 Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K., and Tomita, M. (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bacteriol. 73, 472-479.   DOI
3 Berlutti, F., Ajello, M., Bosso, P., Morea, C., Petrucca, A., Antonini, G., and Valenti, P. (2004) Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. Biometals 17, 271-278.   DOI
4 Brock, J. H. (2002) The physiology of lactoferrin. Biochem. Cell Biol. 80, 1-6.   DOI
5 Bruhn, J. C., Ginn, R. E., Messer, J. W., and Mikolajcik, E. M. (1985) Detection of antibiotic residues in milk and dairy products. in: Richardson H. (Ed.), Standard Methods for the Examination of Dairy Products. American Public Health Association, Washington, D.C. pp. 265-288.
6 Elass-Rochard, E., Roseanu, A., Legrand, D., Trif, M., Salmon, V., Motas, C., Montreuil, J., and Spik, G. (1995) Lactoferrin-lipopolysaccharide interaction: Involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochem. J. 312, 839-845.   DOI
7 Cheeseman, G. C. and Jayne-Williams, D. J. (1964) An inhibitory substance present in milk. Nature 204, 688-689.   DOI
8 Craven, H. M. and Macauley, B. J. (1992) Microorganisms in pasteurized milk after refrigerated storage 1. Identification of types. Austral. J. Dairy Technol. 47, 38-45.
9 Dionysius, D. A. and Milne, J. M. (1997) Antibacterial peptides of bovine lactoferrin: Purification and characterization. J. Dairy Sci. 80, 667-674.   DOI
10 Ellison, R. T., Giehl, T. J., and LaForce, F. M. (1988) Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56, 2774-2781.
11 Garcia, M. L., Sanz, B., Garcia-Colia, P., and Ordonez, J. A. (1989) Activity and thermostability of the extracellular lipases and proteinases from pseudomonads isolated from raw milk. Milchwissenschaft 44, 547-550.
12 Gill, H. S. (1998) Stimulation of the immune system by lactic cultures. Int. Dairy J. 8, 535-544.   DOI
13 Gray-Owen, S. D. and Schryvers, A. B. (1996) Bacterial transferrin and lactoferrin receptors. Trends in Microbiol. 4, 185-191.   DOI
14 Haney, E. F., Lau, F., and Vogel, H. J. (2007) Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. Biochimica et Biophysica Acta 1768, 2355-2364.   DOI
15 Kuhara, T., Iigo, M., Itoh, T., Ushida, Y., Sekine, K., Terada, N., Okamura, H., and Tsuda, H. (2000) Orally administered lactoferrin exerts an antimetastatic effect and enhances production of IL-18 in the intestinal epithelium. Nutr. Cancer 38, 192-199.   DOI
16 Kuhara, T., Yamauchi, K., Tamura, Y., and Okamura, H. (2006) Oral administration of lactoferrin increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small intestine. J. Interferon Cytokine Res. 26, 489-499.   DOI
17 Hunter, H. N., Demcoe, A. R., Jenssen, H., Gutteberg, T. J., and Vogel, H. J. (2005) Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrobial Agents & Chemotherapy 49, 3387-3395.   DOI
18 Jones, E. M., Smart, A., Bloomberg, G., Burgess, L., and Millar, M. R. (1994) Lactoferricin, a new antimicrobial peptide. J. Appl. Bacteriol. 77, 208-214.   DOI
19 Kim, W. S., Ohashi, M., Tanaka, T., Kumura, H., Kim, G. Y., Kwon, I. K., Goh, J. S., and Shimazaki, K. (2004) Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp.. Biometals 17, 279-283.   DOI
20 Lambert, L. A., Perri, H., and Meehan, T. J. (2005) Evolution of duplications in the transferrin family of proteins. Comparative Biochem. Physiol. Part B 140, 11-25.
21 Liepke, C., Adermann, K., Raida, M., Magert, H. J., Forssmann, W. G., and Zucht, H. D. (2002) Human milk provides peptides highly stimulating the growth of bifidobacteria. European J. Biochem. 269, 712-718.   DOI
22 Matsuzaki, K. (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochimica et Biophysica Acta 1462, 1-10.   DOI
23 Qiu, J., Hendrixson, D. R., Baker, E. N., Murphy, T. F., St Geme, J. W., and Plaut, A. G. (1998) Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proceedings of the National Academy of Sciences USA, 95, 12641-12646.   DOI
24 Reiter, B. and Oram, J. D. (1967) Bacterial inhibitors in milk and other biological fluids. Nature 216, 328-330.   DOI
25 Mitoma, M., Oho, T., Shimazaki, Y., and Koga, T. (2001) Inhibitory effect of bovine milk lactoferrin on the interaction between a streptococcal surface protein antigen and human salivary agglutinin. J. Biologic. Chem. 276, 18060-18065.   DOI
26 Nuijens, J. H., van Berkel, P. H., and Schanbacher, F. L. (1996) Structure and biological actions of lactoferrin. J. Mammary Gland Biol. Neoplasia 1, 285-295.   DOI
27 Orsi, N. (2004) The antimicrobial activity of lactoferrin: Current status and perspectives. Biometals 17, 189-196.   DOI
28 Robinson, R. K. and Tamime, A. Y. (1981) Microbiology of fermented milks, in: Robinson R. K. (Ed.), Dairy Microbiology. Vol. 2: The microbiology of milk products, Applied Science Publishers Ltd., Essex, pp. 245-278.
29 Sallmann, F. R., Baveye-Descamps, S., Pattus, F., Salmon, V., Branza, N., Spik, G., and Legrand, D. (1999) Porins OmpC and PhoE of Escherichia coli as specific cell-surface targets of human lactoferrin. Binding characteristics and biological effects. J. Biologic. Chem. 274, 16107-16114.   DOI
30 Shimazaki, K. (2000) Lactoferrin: A marvelous protein in milk? Chikusan Gakkai-ho 71, 329-347.   DOI
31 Takakura, N., Wakabayashi, H., Yamauchi, K., and Takase, M. (2006) Influences of orally administered lactoferrin on IFN-gamma and IL-10 production by intestinal intraepithelial lymphocytes and mesenteric lymph-node cells. Biochem. Cell Biol. 84, 363-368.   DOI
32 van der Kraan, M. I., Groenink, J., Nazmi, K., Veerman, E. C., Bolscher, J. G., and Nieuw Amerongen, A. V. (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25, 177-183.   DOI
33 Vidaver, A. K. (2002) Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34, S107-S110.   DOI
34 Tomita, M., Takase, M., Bellamy, W., and Shimamura, S. (1994) A review: the active peptide of lactoferrin. Acta Paediatrica Japonica 36, 585-591.   DOI
35 Umeyama, M., Kira, A., Nishimura, K., and Naito, A. (2006) Interactions of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR. Biochimica et Biophysica Acta 1758, 1523-1528.   DOI
36 van Berkel, P. H., Geerts, M. E., van Veen, H. A., Mericskay, M., de Boer, H. A., and Nuijens, J. H. (1997) N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem. J. 328, 145-151.   DOI
37 Viejo-Diaz, M., Andres, M. T., and Fierro, J. F. (2005) Different anti-Candida activities of two human lactoferrin-derived peptides, Lfpep and kaliocin-1. Antimicrob. Agents Chemotherapy 49, 2583-2588.   DOI
38 Vogel, H. J., Schibli, D. J., Jing, W., Lohmeier-Vogel, E. M., Epand, R. F., and Epand, R. M. (2002) Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem. Cell Biol. 80, 49-63.   DOI
39 Wakabayashi, H., Yamauchi, K., and Takase, M. (2006) Lactoferrin research, technology and applications. Int. Dairy J. 16, 1241-1251.   DOI
40 Wang, D., Pabst, K. M., Aida, Y., and Pabst, M. J. (1995) Lipopolysaccharide-inactivating activity of neutrophils is due to lactoferrin. J. Leukocyte Biol. 57, 865-874.
41 Ziemer, C. J. and Gibson, G. R. (1998) An overview of probiotics, prebiotics and synbiotics in the functional food concept: Perspectives and future strategies. Int. Dairy J. 8, 473-480.   DOI