Browse > Article
http://dx.doi.org/10.5851/kosfa.2013.33.1.96

Possibility of Instrumental Differentiation of Duck Breast Meat with Different Processing and Storage Conditions  

Sung, Sang Hyun (Korea Institute for Animal Products Quality Evaluation)
Bae, Young Sik (Department of Animal Science and Biotechnology, Chungnam National University)
Oh, Suk Hwan (Korea Institute for Animal Products Quality Evaluation)
Lee, Jae Cheong (Korea Institute for Animal Products Quality Evaluation)
Kim, Hyun Joo (Department of Animal Science and Biotechnology, Chungnam National University)
Jo, Cheorun (Department of Animal Science and Biotechnology, Chungnam National University)
Publication Information
Food Science of Animal Resources / v.33, no.1, 2013 , pp. 96-102 More about this Journal
Abstract
The possibility of instrumental differentiation of duck breast meat treated with different processing and storage conditions was investigated for industrial application. Duck breast meats, which were 1) refrigerated (fresh) after slaughter, 2) fresh but applied the torching process for the removal of remaining feathers (fresh-torched), and 3) frozen and thawed (frozen-thawed), were prepared and the torrymeter value and other quality factors were assessed. The torrymeter values of both duck breast meat and skin showed the lowest in frozen-thawed sample during the whole storage period. The drip loss of frozen-thawed sample was higher than those of fresh or fresh-torched ones. The number of total aerobic bacteria was lower in fresh-torched than fresh but both were not different from frozen-thawed at day 1 while no difference found thereafter. Sensory score of frozen-thawed sample was the lowest. The correlation analysis among the torrymeter value and quality factors of duck breast meat revealed that the torrymeter value is closely related with the total aerobic bacterial number, lipid oxidation, drip loss, and storage period but not with color. The results indicate that once the duck breast meat was frozen then thawed, drip loss and sensory quality can be affected and the torrymeter value can differentiate frozen-thawed from fresh and freshtorched duck breast meat.
Keywords
duck; breast; fresh; frozen-thawed; drip loss;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ambrosiadis, I., Theodorakakos, N., Georgakis, S., and Lekkas, S. (1994) Influence of thawing methods on the quality of frozen meat and the drip loss. Fleischwirtschaft 74, 284-287.
2 Brewer, M. S., Ikins, W. G., and Harbers, C. A. Z. (1992) TBA values, sensory characteristics, and volatiles in ground pork during long-term frozen storage: Effects of packing. J. Food Sci. 57, 558-563.   DOI
3 Chae, H. S., Yoo, Y. M., Ahn, C. N., Jeong, S. G., Ham, J. S., Lee, J. M., and Singh. N. K. (2006) Effect of singeing time on physico-chemical characteristics of duck meat. Korean J. Poult. Sci. 33, 273-281.   과학기술학회마을
4 Duflos, G., Le Fur, B., Mulak, V., Becel, P., and Malle, P. (2002) Comparison of methods of differentiating between fresh and frozen-thawed fish or fillets. J. Sci. Food Agric. 82, 1341-1345.   DOI   ScienceOn
5 Fisher, K. (2007) Drip loss in pork: influencing factors and relation to further meat quality traits. J. Anim. Breed. Genet. 124, 12-18.
6 Ghatass, Z. F., Soliman, M. M., and Mohamed, M. M. (2008) Dielectric technique for quality control of beef meat in the range 10 kHz-1 kHz. Am. Eur. J. Sci. Res. 3, 62-69.
7 Jeong, J. Y., Kim, G. D., Yang, H. S., and Joo, S. T. (2011) Effect of freeze-thaw cycles on physicochemical properties and color stability of beef semimembranosus muscle. Food Res. Int. 44, 3222-3228.   DOI   ScienceOn
8 Jung, S., Lee, J. C., Jung, Y., Kim, M. K., Son, H. Y., and Jo, C. (2011) Instrumental methods for differentiation of frozenthawed from fresh broiler breast fillets. Korean J. Food Sci. An. 31, 27-31.   DOI   ScienceOn
9 Hansen, E., Trinderup, R. A., Hviid, M., Darre, M., and Skibsted, L. H. (2003) Thaw drip loss and protein characterization of drip from air-frozen, cryogen-frozen, and pressureshiftfrozen pork longissimus dorsi in relation to ice crystal size. Eur. Food Res. Technol. 218, 2-6.   DOI
10 Keskinel, A., Ayres, J. C., and Snyder, H. E. (1964) Determination of oxidative changes in raw meats by the 2-thiobarbituric acid method. J. Food Technol. 18, 223-229.
11 Kruk, Z. A., Yun, H., Rutley, D. L., Lee, E. J., Kim, Y. J., and Jo, C. (2011) The effects of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control 22, 6-12.   DOI   ScienceOn
12 KREI (2008) Agricultural Outlook 2008. Korea Rural Economic Institute.
13 KREI (2012) Agricultural Outlook 2012. Korea Rural Economic Institute.
14 Liu, X. D., Jayasena, D. D., Jung, Y., Jung, S., Kang, B. S., Heo, K. N., Lee, J. H., and Jo, C. (2012) Differential proteome analysis of breast and thigh muscle between Korean native chickens and commercial broilers. Asian-Aust. J. Anim. Sci. 25, 895-902.   DOI   ScienceOn
15 Lougovois, V. P., Kyranas, E. R., and Kyrana, V. R. (2004) Comparison of selected methods of assessing freshness quality and remaining storage life of iced gilthead sea bream (Sparusaurata). Food Res. Int. 36, 551-560.
16 SAS (2010) SAS/STAT Software for PC. Release 9.1, SAS institute Inc., Cary, NC, USA.
17 Lynch, M. P. and Faustman, C. (2000) Effect of aldehyde lipid oxidation products on myglobin. J. Agr. Food Chem. 48, 600-604.   DOI   ScienceOn
18 MIFAFF (2011) Major Statistics indices. Ministry of Food, Agriculture, Forestry and Fisheries.
19 Pivarnik, L. F., Kazantizis, D., Karakoltsidis, P. A., Constantinides, S., Jhaveri, S. N., and Rand, A. G. Jr. (1990) Freshness assessment of six New England fish species using the torrymeter. J. Food Sci. 55, 79-82.   DOI
20 Savell, J. W., Branson, R. E., Cross, H. R., Stier, D. M., Wise, J. W., Grin, D. B., and Smith, G. C. (1987). National consumer retail beef study: palatability evaluations of beef loin steaks that diered in marbling. J. Food Sci. 52, 517-519.   DOI
21 Townley, R. R. and Lanier, T. C. (1981) Effect of early eviceration on the keeping quality of Atlantic Croaker (Micropogonundulatus) and grey trout (Cynoscionregalis) as determined by subjective and objective methodology. J. Food Sci. 46, 863-867.   DOI
22 Uddin, M. and Okazaki, E. (2004) Classification of fresh and frozen-thawed fish by near-infrared spectroscopy. J. Food Sci. 69, C665-C668.   DOI   ScienceOn
23 Witte, V. C., Krause, G. F., and Bailey, M. E. (1970) A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 35, 582-585.   DOI
24 Yun, H., Lee, H. J., Lee, K. H., Lee, J. W., Ahn, D. U., and Jo, C. (2012) Effect of high-dose irradiation on quality characteristics of ready-to-eat chicken breast. Radiat. Phy. Chem. 81, 1107-1110.   DOI   ScienceOn