Browse > Article

Toxin Gene Typing, DNA Fingerprinting, and Antibiogram of Clostridium perfringens Isolated from Livestock Products  

Lee, Seung-Bae (Division of Animal Resources and Life Science, Sangji University)
Choi, Suk-Ho (Division of Animal Resources and Life Science, Sangji University)
Publication Information
Food Science of Animal Resources / v.26, no.3, 2006 , pp. 394-401 More about this Journal
Abstract
Forty Clostridium perfringens isolates were obtained from twelve animal products, following the examination of eighty six beef, pork, broiler chicken and salami meat products, and eleven milk powder products. There were 21 isolates from salami stored at $25^{\circ}C$, 3 isolates from pork, 4 isolates from beef, 9 isolates from broiler chicken, and 3 isolates from milk powder. Only the cpa gene encoding a toxin among the 5 toxin genes tested (cpa, cpb, etx, iap, and cpe) was detected in all forty isolates, suggesting contamination with C. perfringens type A. DNA fingerprinting analysis using PCR of the tRNA intergenic spacer (tDNA-PCR) and the 16S-23S internal transcribed spacer (ITS-PCR), and randomly amplified polymorphic DNA (RAPD) analysis were attempted to differentiate the isolates. RAPD analysis was the most discriminating method among the three PCR analyses. Isolates from the same products tended to show similar RAPD patterns. Antimicrobial susceptibility tests showed that some isolates from broiler chickens had the same antibiogram with multiple resistance to streptomycin, colistin, and ciprofloxacin. Antibiograms were similar between isolates from the same livestock products, but differed considerably between the products.
Keywords
Clostridium perfringens; toxin gene; DNA fingerprinting; antibiogram; livestock product; food;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jung, H. K. (1997) Comparison of sensitivity of detection for Clostridium perfringens type A enterotoxin by the reversed passive latex agglutination and the polymerase chain reaction. Korean J. Environ. Health Soc. 23, 45-49
2 Jung H. K. (2000) Comparison of sensitivity for detection of heat-labile enterotoxin of enterotoxigenic Escherichia coli (EC81) and Enterotoxin of enterotoxigenic Clostridium peifringens type A. (NCTC8238) by means of a polymerase chain reaction assay. Korean J. Food Nutr. 13, 1-5
3 McClane, B. A. and Strouse, R. J. (1984) Rapid detection of Clostridium peifringens type A. enterotoxin by enzyme-linked immunosorbent assay. J. Clin. Microbiol. 19, 112-115
4 Meunier, J. R. and Grimont, P. A. D. (1993) Factors affecting reproducibility of amplified polymorphic DNA fingerprint. Res. Microbiol. 144, 373-379   DOI   ScienceOn
5 Petit, L., Gilbert, M., and Popoff, M. R. (1999) Clostridium perfringens : toxinotype and genotype. Trends Microbiol. 7, 104-110   DOI   ScienceOn
6 Richardson, M. and Granum, P. E. (1985) The amino acid sequence of the enterotoxin from Clostridium perfringens type A. Fed. Eur. Biochem. Soci. 182, 470-484   DOI   ScienceOn
7 Saito, M., Matsumoto, M., and Funabashi, M. (1992) Detection of Clostridium peifringens enterotoxin gene by the polymerase chain reaction amplication procedure. Int. J. Food Microbiol. 17, 47-55   DOI   ScienceOn
8 Sterne, M. and Warrack, G. H. (1964) The type of Clostridium peifringens. Pathol. Bacteriol. 88, 279-283   DOI
9 Versalovic, J. and Lupski, J. R. (2002) Molecular detection and genotyping of pathogens: more accurate and rapid answers. Trends Microbiol. 10, S15-S21   DOI   ScienceOn
10 Watkins, K. L., Shryock, T. R., Dearth, R. N., and Saif, Y. M. (1997) In-vitro antimicrobial susceptibility of Clostridium perfringens from commercial turkey and broiler chicken origin. Vet. Microbiol. 54, 195-200   DOI   ScienceOn
11 Wen, Q. and McClane, B. A. (2004) Detection of enterotoxigenic Clostridium peifringens type A. isolates in American retail foods. Appl. Environ. Microbiol. 70, 2685-2691   DOI
12 McClane, B. A. (2001) Clostridium perfringens. In : Food microbiology: fundamentals and frontiers, Doyle, M. P., Beuchat L. R., and Montville, T. J. (eds), ASM Press, Washington. D.C. pp. 351-372
13 McDonel, J. L. (1986) Toxins of Clostridium perfringens type A, B, C, D, and E. In : Pharmacology of bacterial toxins, Dorner, F. and Drews, J. (eds), Pergamon Press, Oxford, pp. 477-507
14 Miwa, N., Nishina, T., Kubo, S., Atsumi, M., and Honda, H. (1998) Amount of enterotoxigenic Clostridium perfringens in meat detected by nested PCR. Int. J. Food Microbiol. 42, 195-200   DOI   ScienceOn
15 Hobbs, B. C.(1965) Clostridium welchii as a food poisoning organism. J. Appl. Bacteriol. 28, 74-82
16 Rood, J. I. (1998) Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52, 333-360   DOI   ScienceOn
17 Sparks, S., Carman, R., Sarker, M., and McClane, B. (2001) Genotyping enterotoxigenic Clostridium perfringens fecal isolated with antibiotic-associated diarrhea and food poisoning in north America. J. Clin. Microbiol. 39, 883-888   DOI   ScienceOn
18 Kim, H. J., Kang, M. I., and Chung, U I. (1997) Rapid identification and toxin type analysis of Clostridium perfringens isolated from healthy or diseased stocks with necrotic enteritis in chicken. Korean J. Vet. Res. 37, 137-146
19 Jung, H. K. (1998) Detection for toxin types of Clostridium peifringens isolates from animals. Korean J. Environ. Health Soc. 24, 22-25
20 Devriese, L. A., Daube, G., Hommez, J. and Hasebrouck, F. (1993) In vitro susceptibility of Clostridium perfringens isolated from farm animals to growth-enhancing antibiotics. J. Appl. Bacteriol. 75, 55-57   DOI
21 Park, K. Y., Lee, S. U., Yoo, H. S., and Yeh, J. G. (1996) Toxigenic type of Clostridium perfringens isolated from chicken in Korea. Korean J. Vet. Res. 36, 829-837
22 Schalch, B., Bader, L., Schau, H. P., Bergmann, R., Rometsch, A., Maydl G., and Kebler, S. (2003) Molecular typing of Clostridium peifringens from a food-borne disease outbreak in a nursing home: ribotyping versus pulsed-field gel electrophoresis. J. Clin. Microbiol. 41, 892-895   DOI
23 Braun, M., Herholz, C., Straub, R., Choisat, B., Frey, J. Nicolet, J. and Kuhnert, P. (2000) Dectection of the ADP-ribosyltransferase toxin gene(cdtA) and its activity in Clostridium difficile isolates from Equidae. FEMS MicrobioI. Lett. 184, 29-33   DOI
24 Daube, G., Simon, P., Limbourg, B., Manteca, C., Mainil, J., and Kaeckenbeeck, A. (1996) Hybridization of 2,659 Clostridium perfringens isolates with gene probes for seven toxins( ${\alpha}$, ${\beta}$, ${\varepsilon}$, ${\iota}$, $\theta, ${\mu}$. and enterotoxin) and for sialidase. Am. J. Vet. Res. 57, 496-501
25 Herholz, C., Miserez, R., Nicolet, J., Frey, J. Popoff, M., Gibert, M., Gerber, H., and Straub, R. (1999) Prevalence of ${\beta}$2-toxigenic Clostridium perfringens in horses with intestinal disorders. J. Clin. Microbiol. 37, 358-361
26 Kanakaraj, R., Harris, D. L., Songer, J. G., and Bosworth, B. (1998) Multiplex PCR assay for dection of Clostridium peifringens in feces and intestinal contents of pigs and in swine fed. Vet. Microbiol. 63, 29-38   DOI   ScienceOn
27 Lin, Y. T. and Labbe, R. (2003) Enterotoxigenicity and genetic relatedness of Clostridium perfringens isolates from retail foods in United States. Appl. Environ. Microbiol. 69, 1642-1646   DOI
28 Saito, M. (1990) Production of enterotoxin by Clostridium perfringens derived from humans animals, foods, and the natural environment in Japan. J. Food Prot. 53, 115-118   DOI
29 Hunter, S. E. C., Braun, J. E., Oyston, P. C. F., Sakuvai, J. and Titball, R. W. (1993) Molecular genetic analysis of ${\beta}$-toxin of Clostridium perfringens reveals sequence homology with ${\alpha}$-toxin, ${\gamma}$-toxin, and leukocidin of Staphylococcus aureus. Infect. Immun. 61, 3958-3965
30 Tschirdewahn, B., Notermans, S., Wernars, K., and Untermann, F. (1991) The presence of enterotoxigenic Clostridium perfringens strains in feces of various animals. Int. J. Food Microbiol. 14, 175-178   DOI   ScienceOn
31 Kilic, U, Schalch, B., and Stolle, A. (2002) Ribotyping of Clostridum peifringens from industrially produced ground meat. Lett. Appl. Microbiol. 34, 238-243   DOI   ScienceOn
32 Clementino, M. M., de Filippis, I., Nascimento, C. R., Branquinho, R. C., Rocha, L., and Martins, O. B. (2001) PCR analyses of tRNA intergenic spacer, 16S-23S internal transcribed spacer, and randomly amplified polymorphic DNA reveal inter- and intraspecific relationships of Enterobacter cloacae strains. J. Clin. Microbiol. 39, 3865-3870   DOI   ScienceOn
33 Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S., and Hayashi, H. (2002) Complete genome sequence of Clostridium perfringens an aerobic flesh-eater. Proc. Natl. Acad. Sci. U.S.A. 99, 996-1001
34 Buogo, C., Capaul, S., Hani, H., Frey, J. and Nicolet, J. (1995) Diagnosis of Clostridium perfringens type C enteritis in pigs using a DNA amplification technique(PCR). J. Vet. Med. B 42, 51-58
35 Fach, P. and Guillou, J. P. (1993) Dection by in vitro amplication of the alpha toxin(phospholipase C) gene for Clostridium peifringens. J. Appl. Bacteriol. 74, 61-66   DOI
36 Jung, I. K., Lee, K. W., Lee, K. H., Kim S. Y, and Ryu, S. R. (1998) Isolation of enterotoxin-positive strains of Clostridium perfringens type A. in Korea. J. Korean Soc. Microbiol. 33, 49-54
37 Songer, J. G. (1996) Clostridial enteric disease of domestic animals. Clin. Microbiol. Rev. 9, 216-234
38 Todd, E. C. D. (1978) Foodborne disease in six countries a comparison. J. Food Protect. 41, 559-565   DOI
39 Martel, A., Devriese, L. A., Cauwerts, K., De Gussem, K., Decostere, A., and Haesebrouck, F. (2004) Susceptibility of Clostridium peifringens strains from broiler chickens to antibiotics and anticoccidials. Avi. Pathol. 33, 3-7   DOI   ScienceOn