Browse > Article

Effect of Suboptimal Temperature Incubation on the Resistance of Lactobacillus acidophilus CT 01 to Storage and Drying  

Yu Keun-Hyung (Department of Food Science and Technology in Animal Resources, Kangwon National University)
Kwon Il-Kyoung (Department of Food Science and Technology in Animal Resources, Kangwon National University)
Kim Gur-Yoo (Department of Food Science and Technology in Animal Resources, Kangwon National University)
Publication Information
Food Science of Animal Resources / v.25, no.1, 2005 , pp. 92-97 More about this Journal
Abstract
This study was carried out to determine the storage, cryotolerance, heat and drying resistance, when Lactobacillus acidophilus CT 01 isolated from preweaned piglet feces growing at suboptimal temperature. L. acidophilus CT 01 suboptimal temperature incubated for 48 hours had the slowest growth rate at 22℃ but the highest viable cell number after 36 hours at 22℃, with 1.3×10/sup 9/ CFU/mL. In case of 4 and 20℃ storage, the suboptimal temperature incubated groups had a viability higher than the control (p<0.01). The cryotolerance of suboptimal temperature incubated L. acidophilus CT 01 was a higher than the control (p<0.01). When L. acidophilus CT 01 was heat treated at 60℃ for 15 minutes and 30 minutes, the suboptimal temperature incubated L. acidophilus CT 01 at 22℃ had a viability higher more than the control (p<0.01). L. acidophilus CT 01 incubated suboptimal temperature was inoculated by 30% to the carrier, and dried at 50℃ for 12 hours had the highest viability in the suboptimal temperature incubated L. acidophilus CT 01 at 28℃.
Keywords
suboptimal temperature; cold shock protein; storage; drying;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fernandez Murga, M. L., de Valdez, G. F., and Anibal Disalvo, E. (2001) Effect of lipid composition on the stability of cellulra membranes during freeze-thawing of Lactobacillus acidophilus grown at different temperatures. Arch. Biochem. Biophys. 333, 179-184   DOI
2 Foster, J. W. (1991) Salmonella acid shock proteins are required for the adaptative acid tolerance response. J. Bacteriol. 173, 6896-6902   PUBMED
3 Heyde, M. and Portalier, R. (1990) Acid shock proteins of Escherichia coli. FEMS Microbiol. Lett. 69, 19-26   DOI   ScienceOn
4 Ishibashi, N. and Shimamura, S. (1993) Bifidobacteria: Research and development in Japan. Food Technol. 46, 126-135
5 Knorr, D. (1998) Technology aspects related to microorganisms in functional foods. Trends in Food Sci. and Technol. 9, 295-306   DOI   ScienceOn
6 Komatsu, Y., Obuchi, K., Iwahashi, H., Kaul, S. C., Ishimura, M., Fahy, G. M., and Rail, W. F. (1990) Deutrium oxide, dimethylsulfoxide and heat shock confer protection against hydrosatic pressure damage in yeast. Biochem. Biophys. Res. Commun. 174, 1141-1147   DOI   ScienceOn
7 Panoff, J. M., Thammavongs, B., Laplace, J. M., Hartke, A., Boutibonnes, P., and Auffray, A. (1995) Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL 1403. Cryobiology 32, 516-520   DOI   ScienceOn
8 Teixeira, P., Castro, H., and Kirby, R. (1995a) Spray drying as method for preparing concentrated cultures of Lactobacillus bulgaricus. J. Appl. Biotech. 78, 456-462
9 Teixeira, P., Castro, H., Mohacsi-Farkas, C., and Kirby, R. (1997) Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J. Appl. Microbiol. 83, 219-226   DOI   ScienceOn
10 Jeffery, R. B. and Chan, L. (1999) Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyphilization. Crybiol. 39, 88-102   DOI   ScienceOn
11 Grossman, A. D., Taylor, W. E., Burton, Z. F., Burgess, R. R., and Gross, C. A. (1985) Stringent response in Esherichia coli induces heat shock protein. J. Mol. Biol. 136, 357-365
12 Kim, W. S., Khunajakr, N., and Dunn, N. W. (1998) Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis. Cryobiol. 37, 86-91   DOI   ScienceOn
13 Kemp, G. and Kiser, J. (1970) Microbial resistance and public health aspects of use of mediate feed. J. Anim. Sci. 31, 1107-1117
14 VanBogelen, R. A., Kelley, P. M., and Neidhardt, F. C. (1987) Differential induction of heat-shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 169, 26-32
15 Teixeira, P., Castro, M. H., Malcata, F. X, and Kirby, R. M. (1995b) Survival of Lactobacillus delbrueckii ssp. bulgaricus following spray drying. J. Dairy Sci. 78, 1025-1031   DOI   ScienceOn
16 Hanson, D. J. (1985) Human health effects of animal feed drugs unclear. Chem. Eng. News. 63, 7-14
17 Salminen, S. and von Wright, A. (1998) Lactic acid bacteria : Microbiology and Functional Aspects. Marcel Dekker Inc., New York
18 Christman, M., Morgan, R., Jacobson, F., and Ame, B. (1985) Positive control of a regulon for defenses against oxidative stress and some heat shock proteins in Salmonella typhimurium. Cell. 41, 753-762   DOI   ScienceOn
19 Foster, J. W. and Hall, H. K. (1990) Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172, 771-778
20 Leyer, G. J. and Johnson, E. A. (1993) Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl. Environ. Microbiol. 59, 1842-1847
21 Svensson, U. (1999) Industrial perspectives. In: Probiotics : A critical review. Tannock, G. W. (ed), Horizon Scientific Press, Wymondham, UK
22 Daemen, A. L. H. and van der Stege, H. J. (1982) The destruction of enzyme and bacteria during the spray drying of milk and whey. 2. The effect of the drying conditions. Neth. Milk Dairy J. 36, 211-229
23 Lorca, G. L. and de Valdez, G. F. (1999) The Effect of suboptimal growth and growth phase on resistance of Lactobacillus acidophilus to environmental stress. Cryobiol. 39, 144-149   DOI   ScienceOn
24 Shin, J. G. (2003) Physiological properties of lactic acid bacteria exposed to low growth temperature. Ph. D. thesis, Seoul National Univ., Suwon, Korea
25 Baati, L., Fabre-Gea, C., Auriol, D., and Blanc., P. J. (2000) Study of the cryotolerance of Lactobacillus acidophilus : effect of culture and freezing conditions on the viability and cellular protein levels. Int. J. Food Microbiol. 59, 241-247   DOI   ScienceOn