Browse > Article
http://dx.doi.org/10.15267/keses.2022.41.2.418

Analyzing the Form, Presentation, and Interactivity of External Representations in the Matter Units of Elementary Science Digital Textbooks Developed Under the 2015 Revised National Curriculum  

Kim, Haerheen (Seoul National University)
Shin, Kidoug (Seoul National University)
Noh, Taehee (Seoul National University)
Kim, Minhwan (Seoul National University)
Publication Information
Journal of Korean Elementary Science Education / v.41, no.2, 2022 , pp. 418-431 More about this Journal
Abstract
In this study, we analyzed the form, presentation, and interactivity of external representations presented in the matter units of elementary school science digital textbooks developed under the 2015 Revised National Curriculum. The analytic framework of the previous study was modified and supplemented. The matter units in the 3rd-6th grade science digital textbooks were analyzed by dividing them into "body texts" and "inquiries" area. The results revealed that visual-verbal and visual-nonverbal representations were presented the most. Conversely, audial-nonverbal representations were presented at a high frequency only in the body texts, and audial-verbal representations were presented at a low frequency in both the body texts and the inquiries. Regarding the presentation, when verbal and visual-nonverbal representations appeared together, visual-verbal and visual-nonverbal representations were primarily presented together. In some cases where visual-verbal, audial-verbal, and visual-nonverbal representations were presented together, information on visual-verbal and audial-verbal representations was presented redundantly. Audial-nonverbal representations unrelated to contents were presented along with other external representations, and the frequency was particularly high in the body texts. Regarding the contiguity, no visual-verbal and visual-nonverbal representations were presented on different pages, and no audial-verbal representations were presented asynchronously with visual-nonverbal representations. Regarding the interactivity, explanatory feedback and low-level manipulations were mainly presented. Based on the results, implications to improve digital textbooks are discussed from the perspective of multiple representation-based learning.
Keywords
elementary science textbook; digital textbook; external representation; multimedia learning; 2015 Revised National Curriculum;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534.   DOI
2 Wu, H. K., Lin, Y. F., & Hsu, Y. S. (2013). Effe cts of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing. Instructional Science, 41(3), 555-573.   DOI
3 Kalyuga, S. (2007). Enhancing instructional efficiency of interactive e-learning environments: A cognitive load perspective. Educational Psychology Review, 19(3), 387-399.   DOI
4 송나윤, 홍주연, 노태희(2020). 2015 개정 교육과정에 따른 중학교 1학년 디지털교과서의 물질 단원에서 나타난 외적 표상의 활용 실태 분석. 대한화학회지, 64(6), 416-428.   DOI
5 김혜진, 손연아, 민병미(2009). 고등학교 생물1 교과서에 포함된 시각 자료 분석틀의 개발과 적용. 생물교육, 37(3), 390-402.   DOI
6 오민기, 정은영(2019). 중학교 과학 교과서 '자극과 반응' 단원의 삽화 분석. 교육과학연구, 21(1), 179-200.
7 오지연, 박지선, 박일우(2017). 2009 개정 교육과정 초등 과학 교과서에 실린 시각자료의 종류, 역할, 그리고 사회-기호학적 특징 분석. 한국초등교육, 28(2), 19-30.   DOI
8 조광희, 조헌국, 윤혜경(2015). 초중고 과학 교과서의 전자기 단원에 제시된 시각적 표상의 유형. 새물리, 65(4), 343-357.   DOI
9 Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12(1), 5-14.   DOI
10 Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226.   DOI
11 Paivio, A. (1986). Mental representation: A dual coding approach. New York, NY: Oxford University Press.
12 Russell, J. W., Kozma, R. B., Jones, T., Wykoff, J., Marx, N., & Davis, J. (1997). Use of simultaneous-synchronized macroscopic, microscopic, and symbolic representations to enhance the teaching and learning of chemical concepts. Journal of Chemical Education, 74(3), 330-334.   DOI
13 Wang, C., Fang, T., & Gu, Y. (2020). Learning performance and behavioral patterns of online collaborative learning: Impact of cognitive load and affordances of different multimedia. Computers & Education, 143, 103683.   DOI
14 Berthold, K., & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101(1), 70-87.   DOI
15 강훈식, 윤지현, 이대형(2008). 제7차 초등학교 3~6학년 과학 교과서에 제시된 외적 표상들의 활용 실태 분석. 초등과학교육, 27(2), 158-169.
16 교육부, 한국교육학술정보원(2018). 초등학교 교사를 위한 디지털교과서 활용 가이드. 대구광역시: 한국교육학술정보원.
17 김노아, 장진아, 송진웅(2018). 서책형교과서와 디지털교과서에 제시된 외적 표상의 특징 비교: 2009 및 2015 개정 교육과정의 중학교 '힘' 관련 단원을 중심으로. 현장과학교육, 12(3), 309-330.   DOI
18 김형진, 이규호, 신명경, 권경필(2014). 초등 과학 교과서에 실린 시각 자료의 종류, 역할 그리고 사회-기호학적 특징 분석. 과학교육연구지, 38(3), 641-656.   DOI
19 Treagust, D. F., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368.   DOI
20 강훈식, 김유정, 노태희(2007). 제7차 중학교 1학년 과학 교과서의 물질 단원에서 외적 표상들의 활용 실태 분석. 한국과학교육학회지, 27(3), 190-200.
21 권이영, 유형빈, 정은영(2011). 중학교 과학 교과서의 삽화 분석. 생물교육, 39(4), 517-528.   DOI
22 이기영(2009). 중학교 과학 교과서에 사용된 시각자료의 유형, 기능 및 구조 분석: 제7차 교육과정 지구과학 내용을 중심으로. 한국지구과학회지, 30(7), 897-908.   DOI
23 이수경(1998). 애니메이션과 인지양식이 과학적 이해와 파지에 미치는 영향. 교육공학연구, 14(2), 69-102.
24 Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152.   DOI
25 Ardak, D., & Akaygun, S. (2005). Using static and dynamic visuals to represent chemical change at molecular level. International Journal of Science Education, 27(11), 1269-1298.   DOI
26 Clark, R. C., & Mayer, R. E. (2008). E-Learning and the science of instruction (2nd ed.). San Francisco, CA: Pfeiffer.
27 Gilbert, J. K. (2009). Multiple representations in chemical education (Vol. 4, pp. 1-8). D. F. Treagust (Ed.). Dordrecht: Springer.
28 Han, J., & Roth, W. M. (2006). Chemical inscriptions in Korean textbooks: Semiotics of macro- and microworld. Science Education, 90(2), 173-201.   DOI
29 Mayer, R. E. (2003). The promise of multimedia learning: using the same instructional design methods across different media. Learning and Instruction, 13(2), 125-139.   DOI
30 Mayer, R. E., & Moreno, R. (2002). Aids to computerbased multimedia learning. Learning and Instruction, 12(1), 107-119.   DOI
31 Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227-237.   DOI
32 van Someren, M. W., Reimann, P., Boshuizen, H. P. A., de Jong, T., & Reimann, P. (1998). Introduction. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.), Learning with multiple representations (pp. 1-5). Oxford, UK: Pergamon.
33 Veronikas, S., & Shaughnessy, M. F. (2005). An interview with Richard Mayer. Educational psychology review, 17(2), 179-189.   DOI