The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.