The automotive industry is transitioning from traditional internal combustion engines to systems powered by motors, batteries, and various electronic control units. Central to this shift is the micro-controller unit, which processes data from various sensors for real-time environmental awareness and control. This paper explores using non-contact magnetic sensors for sensing vehicle inclination as part of a digital twin implementation. Unlike optical or contact sensors, non-contact magnetic sensors offer robust performance in challenging environments, providing consistent and reliable data under varying conditions. To optimize real-time data processing, we propose a double buffer structure to enhance digital signal processing performance in embedded systems. Experiments using a custom sensor-integrated board demonstrate that the double buffer structure with direct memory access-enabled serial peripheral interface significantly reduces data processing time and improves noise reduction filtering. Our results show that the proposed system can greatly enhance the reliability and accuracy of sensor data, crucial for real-time vehicle control systems. In particular, by using the double buffer structure proposed in this paper, it was possible to secure 8.27 times more data compared to raw data, despite performing additional filtering. The techniques outlined have potential applications in various fields, offering enhanced monitoring and optimization capabilities, thus paving the way for more advanced and efficient vehicle control technologies.