The purpose of this thesis is to search for the determination method of pumping rates in the existing tube wells for irrigation. Pumping tests were carried out for the twelve test tube wells which were selected in the provinces of Kyounggi, Kangwon, Chungbuk and Chungnam. The depths, static water levels, pumping levels, drawdowns and yields of tube wells were measured in the pumping tests, and a centrifugal pump with 3 inches diameter, a 5 HP motor and a 90$^{\circ}$ V-notch were used in the pumping tests. The average coefficient of transmissibility calculated by Chow's and Jacob's methods is 0.0336 square meter per second, and the average pumping rate calculated by Thiem's, Smreker's, Brinkhaus' and Theis' formulae, is 919 cubic meter per day, Therefore, the ground water storage in the test areas is comparatively abundant. Correlation between pumping rates and depths of tube wells is not in existence. Also, correlation between pumping rates and the thickness of aquifer is not found in this experiment. This shows that the depths of some tube wells are deep and their thicknesses of aquifer are thick, but their ground water storages are poor, and that the depths of some tube wells are shallow and their thicknesses of aquifer are thin, but their ground water storages are abundant. It seems that the test tube wells are influenced by the peculiar characteristics that the ground water in the test areas is free ground water in alluvium layer closely related with surface water. As drawdown increases, pumping rate decreases, and as the coefficient of transmissibility increases, pumping rate also increases. Namely, there are negative correlation between pumping rate and drawdown, and positive correlation between pumping rate and the coefficient of transmissibility. Judging from the results of the pumping tests in these tests areas, the pumping rate calculated by the formula, {{{{ { Q}_{m } =Q { ( { { S}_{ m} } over { TRIANGLE S } )}^{ { 2} over {3 } } }}}} used traditionally, is likely to be higher than real pumping rates. The formula, {{{{ { Q}_{m } =Q { { H}^{ 2} } over { (2H- TRIANGLE S) TRIANGLE S} }}}} derived from Thiem's theory, is looked upon as the reasonable one to detemine pumping rates in the existing tube wells for irrigation.