This research is to raise awareness of food safety by designing and supporting a hazard food information notification platform for consumers. To this end, the design was carried out by dividing the process into a data extraction process, an application screen design process, and a CNN-based food inference process. Data was collected through public data APIs and crawling, and it was sent to each activity screen designed for Android studios so that it could be output. As a result, when the platform is executed, information on hazardous food names, registration dates, food classification, manufacturing dates, recovery grades, recovery reasons, recovery methods, company names, barcode numbers, and packaging units can be intuitively and conveniently checked. In addition, CNN-based food inference processes allowed mobile cameras to infer harmful food and applied various quantization techniques such as Dynamic Range, Integer, and Float16 to compare the degree of improvement in inference performance. As a result, the group that applied basic quantization and treated device resources with GPU showed the greatest improvement in inference performance. Through this platform, it is expected that the reliability of food safety will be improved by making it more convenient for consumers to recognize food risks.