High-strength concrete (HSC) is becoming increasingly attractive for various construction projects since it offers a multitude of benefits over normal-strength concrete (NSC). Unfortunately, current design provisions for shear capacity of RC slender beams are generally based on data developed for NSC members having a compressive strength of up to 50 MPa, with limited recommendations on the use of HSC. The failure of HSC beams is noticeably different than that of NSC beams since the transition zone between the cement paste and aggregates is much denser in HSC. Thus, unlike NSC beams in which micro-cracks propagate around aggregates, providing significant aggregate interlock, micro-cracks in HSC are trans-granular, resulting in relatively smoother fracture surfaces, thereby inhibiting aggregate interlock as a shear transfer mechanism and reducing the influence of compressive strength on the ultimate shear strength of HSC beams. In this study, a new approach based on genetic algorithms (GAs) was used to predict the shear capacity of both NSC and HSC slender beams without shear reinforcement. Shear capacity predictions of the GA model were compared to calculations of four other commonly used methods: the ACI method, CSA method, Eurocode-2, and Zsutty's equation. A parametric study was conducted to evaluate the ability of the GA model to capture the effect of basic shear design parameters on the behaviour of reinforced concrete (RC) beams under shear loading. The parameters investigated include compressivestrength, amount of longitudinal reinforcement, and beam's depth. It was found that the GA model provided more accurate evaluation of shear capacity compared to that of the other common methods and better captured the influence of the significant shear design parameters. Therefore, the GA model offers an attractive user-friendly alternative to conventional shear design methods.