The granitic plutons associated with Ogcheon geosynclinal zone can be grouped into three different subzones; SE-Subzone for the migmatitic and schistose granites of the southeast margin, 101-181m.y. old; NW-Subzone for those of the northwest margin, 112-163m. y. old; and C-Subzone for those of central part of the zone, 63-183m.y. old. The intrusives in C-Subzone are further subdivided into the older, adamellite to granodiorite (148-183m.y. old) and the younger, perthitic granites (63-106m,y. old). The metallogenic distribution of South Korea suggests that, in the Ogcheon Zone, it is possible to delineate an elongated polymetallogenic province in the general orientation of the zone intimately related with the migmatite and plutonic zones mentioned. Moreover, the mineralization in the province was basically controlled by the patterns of local geology involving country rocks and related igneous bodies, that permit subdivision of the province into the following three parts: Northeast (NE) Province consists dominantly of thick Paleozoic calcareous sediments; Middle (M) Province is characterized by predominant argillaceous and partly calcareous sediments of Precambrian to Late Paleozoic age; and Southwest (SW) Province consisting mainly of volcanic and arenaceous sediments of Mesozoic age. The three different plutonic zones with three different country rock provinces above mentioned make a combination which consists of nine classes. Each class can be assumed to be characterized by specific mineralization type. In order to classify the mineralization types, the present study sampled twenty six ore deposits and mineralized areas in Ogcheon zone as shown figure 2; eight ore deposits from plutonic SE-Subzone, ten from the plutonic NE-Subzone and eight from the plutonic C-Subzone. The characteristics of the classes are as follows: NE-SE is predominant in Au-Ag vein and Sn-migmatite of katazonal occurrence; NE-C is most productive in Pb-Zn and remarkable in Fe contact deposit in mesozone and partly Pb-Zn-Cu skarn in limestone and subordinate in mesozone and partly Pb-Zn pipes; M-SE is considerable in Au-Ag vein and rare elements (Nb, Ta, etc.) of pegmatite; M-C is predominant in F-veins in epizone and Mo-W, Fe, Cu veins occur in replacement type; M-NW is productive in Fe metamorphic and skarn types, partly remarkable in Cu, Pb-Zn contact; SW-SE is barren in mineralization related to Jurassic igneous rocks; SW-C is predominant in alunite and pyrophyllite in tuffs; and SW-NW is scarece in Pb-Zn, Cu, As and Au-Ag veins.