Background: It has been well established and is now no longer a controversial issue that ischemia produces a series of inflammatory reactions and the ischemic myocardium cannot survive without adequate restoration of coronary flow, ie, reperfusion. Nevertheless, controversies that intravascular pluggings (IVP) by polymorphonuclear leukocytes (PMNs) or platelets may cause contractile dysfunction in ischemia and even in repefusion still remain. Accordingly, we attempted to examine the intravascular plug fomation as well as the ultrastructural changes in myocytes and microvessels and to determine the relation among them. Methods: 1) Human (n= 10, 39-63 years of age; 3 females and 7 males): left ventricular myocardium (LVM) was biopsied from chronic ischemic heart disease patient during bypass surgery. 2) Calf (Holstein-Friesian species, n=4): Circumflex branch of the left coronary artery (LCx) was occluded (ischemia) for 45 minutes and recanalized (reperfusion) for 3 and 6 hours, respectively and LVMs were biopsied after occlusion and recanalization, respectiverly. 3) Rat (Sprague-Dawley species, n=20): Left coronary artery (LCA) was occluded for 20 minutes and recanalized for an hour as the method described by Selye et al., (1960) and hearts were removed after occlusion and recanalization, respectively. 4) Pig (landrace type, n=7): Anterior ascending branch of the left coronary artery (LAD) was coccluded for 45 minutes and recanalized for 2 hours and LVMs were biopsied after occlusion and recanalization, repectively. All of the LVMs were routinely prepared for transmissiom electron microscopy. Rseults: In human, most of the LVM showed irreversible ultrastructural changes in myocytes and frequent IVPs by PMNs or platelets without any significant correlation with age or sex. In the animal LVM, myocytes showed reversible ultrastructural changes with slight variations in accordance with the species, duration of ischemia and reperfusion or site of biopsy, however, injuries were more severe in the subendocardial myocytes and IVPs by PMNs or platelets were frequently observed. Ultrastructural changes in the myocytes seemed to be gradually improved by recanalization, howerver, IVPs were still observed after recanalization. Conclusion: These results suggest that microvessels are more resistant to ischemic insult than the myocytes themselves and IVP by PMNs and platelets may play an important role to produce ischemic or reperfusion injuries. Thus, it is favorable that angioplasty is preceded by thrombolysis and it is likely that restoration of myocardial function requires relarively long period of time even after recanalization.