본 논문에서는 copy mechanism과 input feeding 추가한 RNN search 모델을 end-to-end 방식으로 한국어 문서요약에 적용하였다. 또한 시스템의 입출력으로 사용하는 데이터를 음절단위, 형태소단위, hybrid 단위의 토큰화 형식으로 처리하여 수행한 각각의 성능을 구하여, 모델과 토큰화 형식에 따른 문서요약 성능을 비교한다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, 형태소 단위로 토큰화 하였을 때 우수한 성능을 확인하였으며, GRU search에 input feeding과 copy mechanism을 추가한 모델이 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.