대화에서 화자의 의도는 감정, 화행, 그리고 서술자로 표현될 수 있다. 따라서 사용자 질의에 정확하게 응답하기 위해서 대화 시스템은 발화에 내포된 감정, 화행, 그리고 서술자를 파악해야한다. 많은 이전 연구들은 감정, 화행, 서술자를 독립된 분류 문제로 다뤄왔다. 그러나 몇몇 연구에서는 감정, 화행, 서술자가 서로 연관되어 있음을 보였다. 본 논문에서는 Convolutional Neural Netowork를 이용하여 감정, 화행, 서술자를 동시에 분석하는 통합 모델을 제안한다. 제안 모델은 특정 추상화 계층과, 공유 추상화 계층으로 구성된다. 특정 추상화 계층에서는 감정, 화행, 서술자의 독립된 정보가 추출되고 공유 추상화 계층에서 독립된 정보들의 조합이 추상화된다. 학습 시 감정의 오류, 화행의 오류, 서술자의 오류는 부분적으로 역 전파 된다. 제안한 통합 모델은 실험에서 독립된 모델보다 좋은 성능(감정 +2%p, 화행 +11%p, 서술자 +3%)을 보였다.