서브시퀀스 매칭은 질의 시퀀스와 유사한 서브시퀀스를 가지는 데이터 시퀀스와 해당 서브시퀀스의 위치를 찾는 문제이다. 본 논문에서는 윈도우를 구성하는 방법의 이원성을 이용한 새로운 서부시퀀스 매칭 방법인 Dual-Match는 윈도우를 구성하는 방법에 있어서 Faloutsos 등이 사용한 방법(간단히 FRM 이라한다)의 이원적 접근법이다. 즉, FRM에서는 데이터 시퀀스를 슬라이딩 윈도우로 나누고 질의 시퀀스를 디스조인트 윈도우로 나누는 방법을 사용한 반면, Dual-Match에서는 데이터 시퀀스를 디스조이트 윈도우로 나누고 질의 시퀀스를 슬라이딩 윈도우로 나누는 방법을 사용한다. FRM은 색인에 필요한 저장공간을 줄이기 위하여 개별 점 대신 최소 포함 사각형만을 저장함으로 인하여 많은 착오해답(유사하지 않은 후보 서브시퀀스)을 발생시켰다. Dual-Match는 FRM과 비슷한 크기의 저장공간에 개별 점을 직접 저장함으로써 이 문제를 해결한다. 실험결과, Dual-Match는 많은 경우에 있어서 FRM에 비하여 후보 개수를 크게 줄이고 성능을 향상시켰다. 특히, 선택률이 낮은 경우($10^{-4}$이하)에는 후보 개수를 최대 8800배 까지 줄이고, 페이지 액세스 횟수를 최대 26.9배까지 줄였으며, 성능을 최대 430배까지 향상시켰다. 또한, 동일한 크기의 색인을 생성하는데 있어서 Dual-Match는 FRM보다 4.10~25.6배 빠르게 색인을 구성하였다. 이는 색인 구성시에 CPU 오버헤드의 많은 부분을 차지하는 저차원 변환의 횟수를 FRM에 비해 크게 줄이기 때문이다. 이 같은 결과로 볼 때, Dual-Match는 대용량 데이터베이스에 대한 서부시퀀스 매칭의 성능을 크게 향상시킬 수 있는 획기적인 연구 결과라 믿는다.