This study was performed to investigate the bioconcentration of dichlorvos, methidathion and phosalone in zebrafish (brachydanio rerio), red sword tail(Xiphophorus hellieri). The fishes were exposed to 0.05 ppm, 0.01 ppm, 0.50 ppm, one-hundredth concentration of 96-hrs LC$_{50}$ and one-thousandth concentration of 96-hrs LC$_{50}$ and test periods were 3, 5 and 8 days. The deputation rate of each pesticide from the whole body of fish was determined over the 24-hr period after treatment. Obtained results are summerized as follows: In the case of dichlorvos, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were increased as increasing test concentration. In the case of same experimental concentrations, dichlorvos concentration in zebrafish extract and BCF$_{s}$ of dichlorvos were decreased as proloning test periods, especially dropped after 5days. Dichlorvos concentration in red sword tail extract were increased as increasing test concentration, lyat BCF$_{s}$ in concentration of 0.05 ppm, 0.01 ppm and one-hundredth of 96-hrs LC$_{50}$ were decreased. Methidathion and phosalone concentration in zebrafish extract in zebrafish extract were increased as increasing test concentration, but there was little difference in BCF$_{s}$. In the case of same experimental concentrations, there were little differences in BCF$_{s}$ and concentration in zebrafish extract. In the case of red sword tail, it was impossible to calculate on BCF$_{s}$ data because test concentration was under the detecting limit on GC or test fish were die. Determined deputation rate conatant were highest on dichlorvos, and followed by methidathion, and phosalone. The results of determining depuration rate of these pesticides showed that the high BCF in fish might be due to the slow depuration rate in fish, it is thought to be responsible for vapor pressure, water solubility and partition coefficient. It is suggested that one-hundredth concentration of 96-hrs LC$_{50}$ will be proper test concentration because one-thousundth of LC$_{50}$ was under the detecting limit on GC. Dichlorvos, methidathion and phosalone, organophosphorous pesticides, were examined to their BCF$_{s}$ and depuration rates by means of fish test.