Lee, Hwa-Sun;Na, Hee-Sam;Jeong, So-Yeon;Jeong, Sung-Hee;Park, Hae-Ryoun;Chung, Jin
109
Periodontitis results from the activation of host immune and inflammatory defense responses to subgingival plaque bacteria, most of which are gram-negative rods with lipopoly-saccharides (LPSs) in their cell walls. LPSs have been known to induce proinflammatory responses and recently it was reported also that they induce the expression of microRNAs (miRNAs) in host cells. In our current study therefore, we aimed to examine and compare the miRNA expression patterns induced by the LPSs of major periodontopathogens in the human gingival epithelial cell line, Ca9-22. The cells were treated with 1 ${\mu}g$/ml of E. coli (Ec) LPS or 5 ${\mu}g$/ml of an LPS preparations from four periodontopathogens Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) for 24 h. After small RNA extraction from the treated cells, miRNA microarray analysis was carried out and characteristic expression profiles were observed. Fn LPS most actively induced miRNAs related to inflammation, followed by Aa LPS, Pi LPS, and Ec LPS. In contrast, Pg LPS only weakly activated miRNAs related to inflammation. Among the miRNAs induced by each LPS, miR-875-3p, miR-449b, and miR-520d-3p were found to be commonly up-regulated by all five LPS preparations, although at different levels. When we further compared the miRNA expression patterns induced by each LPS, Ec LPS and Pi LPS were the most similar although Fn LPS and Aa LPS also induced a similar miRNA expression pattern. In contrast, the miRNA profile induced by Pg LPS was quite distinctive compared with the other bacteria. In conclusion, miR-875-3p, miR-449b, and miR-520d-3p miRNAs are potential targets for the diagnosis and treatment of periodontal inflammation induced by subgingival plaque biofilms. Furthermore, the observations in our current study provide new insights into the inflammatory miRNA response to periodontitis.