방사선산업학회지 (Journal of Radiation Industry) (Journal of Radiation Industry)
한국방사선산업학회 (Korean Society of Radiation Industry)
- 계간
- /
- 1976-2402(pISSN)
과학기술표준분류
- 원자력 > 방사선 기술
Aim & Scope
방사선 산업에 관련된 이론 및 응용 분야
KCI제17권4호
-
Radiopharmaceuticals that need to be transported in a low-temperature state must satisfy both radiation safety and proper temperature maintenance. However, an efficient transport system considering the characteristics of radiopharmaceuticals that require low temperature maintenance has not yet existed. In order to secure a transportation system for the safe and stable transportation of the radiopharmaceutical 131I mIBG, which requires transportation in cryogenic conditions, we have developed a transportation system that can maintain cryogenic conditions below -60℃ for 6 days while stably fixing the inner container. In addition, by applying a data logger that can simultaneously measure the temperature and the dose of radiation, safety and stability in the transportation process can be secured at the same time. The cryogenic transportation system for 131I mIBG will be applied to products currently being supplied, and we expect to dramatically improve the management of cold chain radioactive material transportation.
-
This study identified effects of Isoegomaketone for applicable patch on the arthritis in mice. Isoegomaketone (IK) was isolated from Perilla frutescens, which is annual herbal traditional medicinal, aromatic, functional food. IK has various physiological effects such as anti-inflammation, anti-oxidant, and anti-cancer. In the previous study, oral administration of IK to a mouse model of collagen antibody-induced arthritis(CAIA), which is similar to human rheumatoid arthritis(RA), alleviated symptoms. In this study, we attached a patch containing IK to mouse skin to demonstrate whether it had the same efficacy as oral administration in CAIA mouse. As a result of measuring the arthritis score, paw volume, and paw thickness, it was confirmed that arthritis symptoms were alleviated in the group to which the patch containing IK was attached. These results show that IK is effective in alleviating arthritis not only through oral administration but also through patches applied to skin, and that it has potential as a material for future patch development.
-
To validate the numerical model used in the study of deep disposal of spent nuclear fuel, we selected benchmark cases and performed numerical model validation. We selected the DECOVALEX-THMC Task D_THM1 FEBEX Type benchmark case, which was conducted from 2003 to 2007. We analyzed the thermal-hydraulic (TH) behavior using the finite element program CODE_BRIGHT and verified the results against previous studies. The temperature results were similar to the results of DECOVALEX-THMC Task D. The saturation results showed a similar trend to the results of DECOVALEX-THMC Task D, but the time to reach full saturation was different.
-
Nuclear forensics has been understood as a mendatory component in the international society for nuclear material control and non-proliferation verification. Radiochronometry of nuclear activities for nuclear forensics are decay series characteristics of nuclear materials and the Bateman equation to estimate when nuclear materials were purified and produced. Radiochronometry values have uncertainty of measurement due to the uncertainty factors in the estimation process. These uncertainties should be calculated using appropriate evaluation methods that are representative of the accuracy and reliability. The IAEA, US, and EU have been researched on radiochronometry and uncertainty of measurement, although the uncertainty calculation method using the Bateman equation is limited by the underestimation of the decay constant and the impossibility of estimating the age of more than one generation, so it is necessary to conduct uncertainty calculation research using computer simulation such as Monte Carlo method. This highlights the need for research using computational simulations, such as the Monte Carlo method, to overcome these limitations. In this study, we have analyzed mathematical models and the LHS (Latin Hypercube Sampling) methods to enhance the reliability of radiochronometry which is to develop an uncertainty algorithm for nuclear material radiochronometry using Bateman Equation. We analyzed the LHS method, which can obtain effective statistical results with a small number of samples, and applied it to algorithms that are Monte Carlo methods for uncertainty calculation by computer simulation. This was implemented through the MATLAB computational software. The uncertainty calculation model using mathematical models demonstrated characteristics based on the relationship between sensitivity coefficients and radiative equilibrium. Computational simulation random sampling showed characteristics dependent on random sampling methods, sampling iteration counts, and the probability distribution of uncertainty factors. For validation, we compared models from various international organizations, mathematical models, and the Monte Carlo method. The developed algorithm was found to perform calculations at an equivalent level of accuracy compared to overseas institutions and mathematical model-based methods. To enhance usability, future research and comparisons·validations need to incorporate more complex decay chains and non-homogeneous conditions. The results of this study can serve as foundational technology in the nuclear forensics field, providing tools for the identification of signature nuclides and aiding in the research, development, comparison, and validation of related technologies.
-
In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.
-
Radon, a carcinogenic substance generated from soil or building materials, have to be fundamentally blocked from entering indoors. In this study, ethylene vinyl acetate (EVA)/silicone emulsions with excellent mechanical and thermal properties and effective blocking of radon gas were prepared by using radiation technology. As the electron-beam irradiation does increased, a partially crosslinked structure was formed in EVA molecular chain, increasing tensile properties and adhesive strength. The EVA/silicone film showed excellent thermal stability without deformation. In addition, the non-irradiated EVA/silicone film showed a radon blocking rate of about a 75%, while the EVA/silicone film irradiated with 3 and 5 kGy showed an excellent radon blocking rate of over 90% due to the formation of crosslinked structure in the EVA molecular chain. These results indicated that the radiation technology can effectively block radon by forming a partially crosslinked structure of EVA/silicone emulsion to improve tensile property, adhesive strength, and deformation stability.
-
In this study, the image quality assessment, especially spatial resolution evaluation, for Sparse-view CT reconstructed images was performed. The main goal of the experiment is to evaluate Modulation Transfer Function by using American Standard Method for Measurement of Computed Tomography System Performance(ASTM E1695-95) which uses the edge test object. To compare with the ASTM method, a different method, the radial-type edge profile, to measure MTF using the edge method also performed. Both approaches were tested on the same image acquired by the stationary-gantry sparse-view CT security-screening system using cylindrical test phantom manufactured in accordance with ANSI 42.45. Both of the spatial resolutions at 10% modulation are 0.195, 0.203lp pixel-1, respectively. The method implemented by ASTM E1695-95 showed higher reliability and had a relatively more accurate spatial resolution result than the radial-type edge profile method.
-
The uterus, one of women's reproductive organs, is also closely related to women's health. Among them, hemorrhagic luteal cysts, one of the causes of pelvic pain that women often experience, were observed through CT and ultrasound, and the quality of images was evaluated through quantitative and qualitative evaluations. This study sought to find out whether the test method is more helpful to patients during CT and ultrasound. This study was conducted on 15 adolescent women and 15 adult women(21.31±3.45 average age). The equipment used for filming used EC3-10X (3~10 MHZ) and Philips Mx8000 iCT 256 among Endocavity Probes among Ecube Platinum. After setting a constant ROI on the cyst and the interface as a quantitative analysis method, SNR and CNR values were measured on a 5-point scale based on image quality, lesion clarity, image distortion, clarity of the interface, and motion artifacts (p<0.05). Independent t-test and Mann Whiteny U were performed, and the statistical program used was noted when SPSS (Version 22.0 for windows software package, Chicago, IL, USA) was statistically less than 0.05. Comparing the SNR and CNR values for this experiment, it can be seen that the SNR value was higher in the case of CT images(p<0.05). As a result of the qualitative evaluation, the quality of the image, the clarity of the lesion, the distortion of the image, the clarity of the interface, and the clarity of the boundary were measured on a 5-point scale based on the movement artifact. Comparing each score, CT images scored higher with a finer difference than ultrasound images(p<0.05). In conclusion, both test methods showed excellent results in finding the patient's lesions. However, in quantitative and qualitative evaluations, CT produced higher results in detecting lesions than ultrasound. However, for cyst tests that require continuous observation, ultrasonography, a non-invasive method that is advantageous for patients, will be clinically useful. Therefore, observing the patient's lesions by appropriately distributing these two test methods will provide optimal diagnostic information. These results will be useful for providing clinical basic data and educational materials to CT and US users in the future.
-
Currently, state-of-the-art devices such as SPECT, PET/CT, and PET/MRI are rapidly spreading nationwide, and the penetration rate of nuclear medical devices is also ranked fifth in the world. However, PET/MRI's system is slower and less common because it is more complex than PET/CT. The purpose of this study is to provide optimal information on PET/MRI according to the patient's disease. The subjects obtained information on head and neck cancer, pediatric patients, breast cancer patients, heart disease patients, lung cancer patients, and rectal cancer patients. We tried to accumulate protocols by obtaining a lot of information about each disease. In diagnosing head and neck cancer, it is believed that it is highly likely to be used in evaluating preoperative stage determination, recurrence and remote metastasis after treatment, and unclear primary cervical lymph node metastasis. Diagnosis and continuous follow-up of pediatric patients can increase patient benefits by minimizing radiation exposure. Breast cancer provides a comprehensive evaluation of the clinical need to determine the extent of disease in breast and local lymph nodes and the systematic stages of early diagnosis or recurrence. In diagnosing heart disease patients, MR-based PET motion correction helps to realize the full potential of PET images. For lung cancer patients, the clinical value and usefulness of the resolution and detection ability of integrated PET/MRI for soft tissues such as lung cancer will be sufficient. In diagnosing rectal cancer patients, the detection of missing residual diseases can change the clinical response evaluation for rectal cancer patients treated with TNT, and both the initial stage and treatment response evaluation are possible. Therefore, this literature study provided basic clinical data for PET/MRI tests.
-
The purpose of this study is to obtain brain MRI images through Heavenly T2 FLAIR and DWI techniques to find out strengths and weaknesses of each image. Data were analyzed on 13 normal people and 17 brain tumor patients. Philips Ingenia 3.0TCX was used as the equipment used for the inspection, and 32 Channel Head Coil was used to acquire data. Using Image J and Infinity PACS Data, 3mm2 of gray matter, white matter, cerebellum, basal ganglia, and tumor areas were set and measured. Quantitative analysis measured SNR and CNR as an analysis method, and qualitative analysis evaluated overall image quality, lesion conspicuity, image distortion, susceptibility artifact and ghost artifact on a 5-point scale. The statistical significance of data analysis was that Wilcox-on Signed Rank Test and Paired t-test were executed, and the statistical program used was SPSS ver.22.0 and the p value was less than 0.05. In quantitative analysis, the SNR of gray matter, white matter, cerebellum, basal ganglia, and tumor of Heavily T2 FLAIR is 41.45±0.13, 40.52±0.45, 41.44±0.51, 40.96±0.09, 35.28±0.46 and the CNR is 15.24±0.13, 16.75±0.23, 16.28±0.41, 15.83±0.17, 16.63±0.51. In DWI, SNR is 32.58±0.22, 36.75±0.17, 30.21±0.19, 35.83±0.11, 43.29±0.08, and CNR is 13.14±0.63, 14.21±0.31, 12.95±0.32, 11.73±0.09, 17.56±0.52. In normal tissues, Heavenly T2 FLAIR obtained high results, but in disease evaluation, high results were obtained at DWI, b=1000 (p<0.05). In addition, in the qualitative analysis, overall image quality, lesion conspicuity, image distortion, susceptibility artifact and ghost artifact aspects of the Heavily T2 FLAIR were evaluated, and 3.75±0.28, 2.29±0.24, 3.86±0.23, 4.08±0.21, 3.79±0.22 values were found, respectively, and 2.53±0.39, 4.13±0.29, 1.90±0.20, 1.81±0.21, 1.52±0.45 in DWI. As a result of qualitative analysis, overall image quality, image distortion, susceptibility artifact and ghost artifact were rated higher than DWI. However, DWI was evaluated higher in lesion conspicuity (p<0.05). In normal tissues, the level of Heavenly T2 FLAIR was higher, but the DWI technique was higher in the evaluation of the disease (tumor). The two results were necessary techniques depending on the normal site and the location of the disease. In conclusion, statistically significant results were obtained from the two techniques. In quantitative and qualitative analysis, the two techniques had advantages and disadvantages, and in normal and disease evaluation, the two techniques produced useful results. These results are believed to be educational data for clinical basic evaluation and MRI in the future.
-
The magnetic resonance imaging method is a technology that can diagnose patients using local magnetic field through local magnetic field through local magnetic field through local magnetic field and STEAM method using local magnetic field Currently, many diseases can diagnose many diseases using self-resonance methods. The purpose of this study is to provide optimal information about using magnetic resonance imaging method according to patients.In many studies, self-resonance imaging showed that self-resonance methods can effectively inspect brain cancer and liver diseases. mong them, this study, brain tumor tests, cervical cancer tests based on literature, there were effective parts of these four diseases, but it was clearly found that they should not use in clinical trials, but it is clearly found to improve and improve and improve. Therefore, it is believed that it will be based on the future studies.
-
From Cold War, Nuclear weapons have emerged military power into a very dangerous and important way of each national security. Throughout the era, the U.S. had stationed nuclear weapons in South Korea. But President George Bush initially started the withdrawal of nuclear tactical weapons deployed abroad in 1991. After that, under the protection of the nuclear umbrella, South Korea guarantees that the United States would operate its nuclear weapons to protect South Korea if it would be needed and the economy of South Korea has rapidly developed as more strong countries in the world. However, South Korea has seen and been realized the present state from the recent war between Russia and Ukraine. The protection of the U.S. nuclear umbrella from nuclear weapons and ballistic missiles of North Korea is unlikely to be permanently guaranteed. At the same time, South Korea should consider the security environment changes of surrounding nations such as China as military power acceleration and Russia as re-formation ambition. Because of these reasons, South Korea independently wants to protect itself and have the own nuclear weapons as a way to counter security threats. A majority of South Koreans also definitely believe that North Korea will not denuclearize or give up because North Korea has been having nuclear weapons as the final survival strategy of Kim Jong Un's regime. However, South Korea considers and makes new nuclear strategy through the role and effect of nuclear deterrence strategy in dispute between India and Pakistan and how to overcome the paradox of nuclear deterrence strategy. Therefore, this research is to suggest the effective nuclear deterrence strategy of South Korea from new security threats of surrounding nations through dispute between India and Pakistan. The focus of this research is that what is the role and paradox of nuclear deterrence strategy in dispute between India and Pakistan and how to find the effective nuclear deterrence strategy of South Korea.
-
Lutetium(177Lu), with its theranostic properties, is one of the most widely used radioisotopes and has a large share of the radiopharmaceutical market due to its many applications and targeted therapeutic research using lutetium-based radiopharmaceuticals. However, lutetium-based radiopharmaceuticals currently approved by the US Food and Drug Administration (FDA) are limited to the indications of gastrointestinal cancer, pancreatic neuroendocrine cancer and metastatic castration-resistant prostate cancer. To overcome these limitations, we aimed to demonstrate the feasibility of expanding the use of lutetium-based radiopharmaceuticals by verifying the availability and therapeutic efficacy of lutetium produced in a research reactor(HANARO). In this study, we confirmed the therapeutic efficacy of lutetium by using cancer cells from different types of cancer. In addition, we selected cancer biomarkers based on characteristics common to various cancer cells and compared and evaluated the therapeutic efficacy of lutetium by regulating the expression of target genes. The results showed that modulation of cancer biomarker gene expression resulted in higher therapeutic efficacy compared to lutetium alone. In conclusion, this study verified the potential use and therapeutic efficacy of lutetium based on the production of a research reactor (HANARO), providing fundamental evidence for the development of lutetium-based radiopharmaceuticals and the expansion of their indications.
-
As a result of evaluating the level of tritium emitted from the nuclear power plant in the environment and the human body, it was confirmed that tritium was detected in the environmental media and human urine samples to be investigated. It was found that the tritium was clearly detected. After the operation of the Tritium Removal Facility (TRF), which was operated for the purpose of removing tritium from the Wolsong nuclear power plant, the tritium emission showed a decreasing trend, and the tritium level in the environmental media also showed a tendency to decrease accordingly. However, for precise evaluation, it was necessary to select and investigate points by distance, season, and wind direction from the nuclear power plant, but it also showed characteristics that did not reflect this. As the cycle, etc., implemented the previous environmental monitoring program as it is, there was also a limitations in not being able to reflect the changing environment. Therefore, it is necessary to review and supplement the environmental monitoring investigation plan and results so far, and by applying the supplemented investigation plan to secure valid and reliable investigation results, it is judged that it will be an appropriate measure for environmental conservation and human protection in the vicinity of the nuclear power plant.
-
This study conducted a comparative analysis of dose evaluations for ingestion of animal products based on data from nuclear power plants in the Republic of Korea, using methodologies from the Republic of Korea, 'IAEA TRS-472', and 'CSA N288.1:14'. The research focused on tritium, the most significant constituent among the gaseous and liquid radioactive emissions. The combined evaluation of tritium, in the form of tritiated water (HTO) and organically bound tritium (OBT), yielded results of 1.143 μSv y-1 for the Republic of Korea, 0.965μSv y-1 for 'TRS-472', and 0.886μSv y-1 for 'N288.1:14'. Despite the Republic of Korea's guidelines not considering OBT, the evaluation results for the Republic of Korea were higher compared to other methodologies. This discrepancy was attributed to the unique approach of not considering the moisture content per individual in the calculations of plant and feed concentration in the Republic of Korea and the simultaneous consideration of specific-activity model and transfer model. The study highlights the necessity of developing dose evaluation models tailored to regional characteristics and underscores the importance of including OBT in these evaluations.
-
KAERI(Korea Atomic Energy Research Institute) is conducting research and development of large-scale radiation generators and the latest radiation measuring instruments. In particular, research and development of security screening equipment using an electron beam accelerator and a neutron generator is in progress recently. Globally, 20 ft containers are used to transport imports and exports, and electron beam accelerators are radiation sources to measure the shape of the material inside the container during customs inspections in each country. KAERI is developing a device that can use an electron beam accelerator and a neutron generator sequentially to grasp the shape of various materials as well as the location of the internal target material. In this study, when using the neutron generator, the radiation dose and the degree of activation by neutron for the facility and surrounding environment, facility equipment were simulated using MCNP and FISPACT code. As a result, the shielding structures inside and outside the radiation control area were satisfactory to the reference level established conservatively based on the Korean Nuclear Act.
-
The subject of this research is what is the most effective strategy of the nuclear sharing strategy of South Korea through the nuclear strategy that the U.S. is pursuing now. The U.S. Nuclear Strategy-related change can be found in a Nuclear Posture Review (NPR) report released by the U.S. The first NPR was announced in 1994 and after that, the U.S. has additionally announced a total of four NPRs along with administration changes. The change in the U.S. nuclear strategy and nuclear power are considered both deterrence and offset strategies. It can be summarized in two ways. First, by maintaining overwhelming nuclear power against the enemy, the U.S. is to lead nuclear advantage that is the core of the U.S. nuclear strategy. Second, the U.S. is to limit the competition of nuclear power with nations seeking to challenge the U.S. nuclear power advantage. Additionally, the U.S. is to actively sign an agreement with nations on the reduction and restriction of nuclear weapons. Through the NPR of the U.S., South Korea should know its unclear power and strategy and have an effective nuclear strategy of South Korea. Therefore, this research is to deal with the suitability of the nuclear sharing strategy with the U.S., which is one of the various nuclear strategies of South Korea.
-
The clearance level by nuclide is announced by the Nuclear Safety and Security Commission. However, the clearance level of uranium existing in nature has not been announced, and research is needed. Therefore, the purpose of this study was to evaluate the clearance level of uranium nuclides appropriate to domestic conditions preliminary. For this purpose, this study selected major processes for recycling metal wastes and analyzed the exposure scenarios and major input factors by investigating the characteristics of each process. Then, the radiation dose to the general public and workers was evaluated according to the selected scenarios. Finally, the results of the radiation dose per unit radioactivity for each scenario were analyzed to derive the clearance level of uranium in metal waste. The results of the radiation dose assessment for both the general public and workers per unit radioactivity of uranium isotopes were shown to meet the allowable dose (individual dose of 10 µSv y-1 and collective dose of 1 Man-Sv y-1) regulated by the Nuclear Safety and Security Commission. The most conservative scenarios for volumetric and surface contamination were evaluated for the handling of the slag generated after the melting of the metal waste and the direct reuse of the contaminated metal waste into the building without further disposal. For each of these scenarios, the radioactivity concentration by uranium isotope was calculated, and the clearance level of uranium in metal waste was calculated through the radioactivity ratio by enrichment. The results of this study can be used as a basic data for defining the clearance level of uranium-contaminated radioactive waste.
-
In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.
-
After conducting a hydrogen bomb test and launching an intercontinental ballistic missile (ICBM) in 2017, The Democratic People's Republic of Korea (North Korea, D.P.R.K.) declared the completion of its national nuclear capabilities. Currently, North Korea is refusing all nuclear inspections, but the possibility of nuclear inspections and the denuclearization process on the Korean Peninsula still exists. The Republic of Korea (South Korea, Rep. of Korea) has numerous reasons as a neighboring country to participate in North Korea's nuclear inspections and denuclearization, including technological capabilities, geographical proximity, and linguistic benefits. This study assumes nuclear inspections and verification within North Korea and aims to propose scenarios for the transportation and operation of personnel and equipment. The data and results compiled through this research are anticipated to serve as foundational information for future inspections and verifications on the Korean Peninsula. Furthermore, it is assessed that they could contribute to the development of strategies in preparation for participation in denuclearization efforts.
-
ChangHyun Jin;Ye-Ram Kim;JaeYoung Shin;ByoungOk Cho;Ah-Reum Han 489
Isoegomaketone(IK), isolated from the radiation-induced mutant cultivar of Perilla frutescens var. crispa, is a major phytochemical compound that has attracted attention in pharmacological research. In this study, we demonstrated that IK exerts anti-inflammatory and protective effects on human mast cells and in an atopic dermatitis mouse model. IK inhibited tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), and IL-8 expression in human mast cells (HMC-1) stimulated with phorbol myristate acetate(PMA) and calcium ionophore A23187 (PMACI). IK significantly reduced the PMACI-induced phosphorylation of ERK and JNK, but not p38. IK also inhibited the PMACI-induced phosphorylation of STAT1 and STAT3. Oral administration of IK in atopic dermatitis mouse model ameliorated skin inflammation severity, as measured by skin thickness and pro-inflammatory cytokine levels such as TNF-α, IL-8, IL-4, and IL-13. These results might suggest that IK is a potent therapeutic agent against skin inflammation and atopic dermatitis. -
There are various factors that have a negative impact on safety over a long period of time after the closure of a radioactive waste disposal facility. In particular, it is important to limit substances that accelerate radionuclide migration while inhibiting adsorption between radionuclides and the subsurface medium. Through this study, a method for deriving a quantitative criteria evaluation method is proposed for cellulose among materials that accelerate the movement of these radionuclides after closure of the disposal facility. Since Sweden's SKB is representative worldwide for preparing criteria for cellulose in disposal facilities, it analyzed Sweden's acceptance criteria method and presented a method that can be applied domestically. The decomposition characteristics of cellulose and the adsorption and dissolution characteristics of ISA among degradation products were reviewed, and quantitative analysis of cement materials that create a high pH environment favorable for cellulose decomposition was also included. In addition, the total amount of the finally disposable cellulose material can be derived by using the volume information of the waste containing the cellulose material. Through this methodology for calculating the total amount of cellulose, it is expected that subsequent studies will be conducted to secure data reflecting the environmental conditions of radioactive waste disposal facilities in Korea. In addition, it is expected to be utilized as a good method to evaluate the impact of other complexing agents other than cellulose and to suggest the amount of disposal.
-
The Kori Unit 1 nuclear power plant, which is planned to be dismantled after permanent shutdown, is expected to generate a large amount of various types of radioactive waste during the dismantling process. For the disposal of Very-low-level waste, which is expected to account for the largest amount of generation, the Korea Radioactive waste Agency (KORAD) is in the process of detailed design to build a 3-phase landfill disposal facility in Gyeongju. In addition, a large container is being developed to efficiently dispose of metal and concrete waste, which are mainly generated as Very low-level waste of decommissioning. In this study, based on the design characteristics of the 3-phase landfill disposal facility and the large container under development, radiation exposure dose evaluation was performed considering the normal and accident scenarios of radiation workers during operation. The direct exposure dose evaluation of workers during normal operation was performed using the MCNP computer program, and the internal and external exposure dose evaluation due to damage to the decommissioning waste package during a drop accident was performed based on the evaluation method of ICRP. For the assumed scenario, the exposure dose of worker was calculated to determine whether the exposure dose standards in the domestic nuclear safety act were satisfied. As a result of the evaluation, it was confirmed that the result was quite low, and the result that satisfied the standard limit was confirmed, and the radiational disposal suitability for the 3-phase landfill disposal facility of the large container for dismantled radioactive waste, which is currently under development, was confirmed.
-
Spent nuclear fuel(SNF) is stored in nuclear power plants for a certain period of time and then transported to an interim storage facility. After that, SNF is finally repackaged in a disposal canister at an encapsulation plant for final disposal. Finland and Sweden, leading countries in SNF disposal technology, have already completed designing of spent fuel encapsulation plant. In particular, the encapsulation plant construction in Finland is near completion. When it comes to South Korea, as the amount of SNF production and disposal plan is different from those in Finland and Sweden, it is difficult to apply the concepts of these contries as is. Therefore, it is necessary to establish the spent fuel repackaging concept and to derive each operating and repackaging procedures by considering annual disposal plan of South Korea. The results of this study is expected to be used to establish the concept of optimized encapsulation plant through further research.
-
We developed an emergency national manual for preservation of cultural heritage using irradiation disinfection technic under flood disaster. And we examined its practicality with a critical radiation dose on fungi that occur at water-logged event in order to prevent fungal damage that occurs during submersion. The X-ray irradiation for this experiment was conducted at the Production Technology Research Institute located in Yeongcheon, Gyeongsangbuk-do. A disinfection critical dose of 12 kGy was selected for two types of fungi known to spread rapidly and are resistant to radiation to submerged cultural properties, and this experiments were conducted by setting a target dose of 12kGy at 8.37mA at 5MeV. Under the above conditions, only continuity of irradiated samples were completely disinfected. This suggests that continuity of irradiation is important for fungal disinfection.
-
Thallium-201 (201Tl) is a medical radioisotope which emits gamma rays when it decays and used in myocardial perfusion scans in single-photon emission tomography due to its similar properties to potassium. Currently, the Korea Institute of Radiological & Medical Sciences is the only institution producing 201Tl in Korea, and optimization of 201Tl production research is necessary to meet supply compared to domestic demand. To this end, technical analysis of plating target production and chemical separation methods essential for 201Tl production research is conducted. It deals with the process of generating and separating 201Tl radioisotope and target production, It can be generated through a nuclear reaction such as natHg(p,xn)201Tl, 201Hg(p,n)201Tl, natPb(p,xn)201Bi → 201Pb → 201Tl, 205Tl(p,5n)201Pb → 201Tl, and considering impure nuclide generated simultaneously with the use of proton beam energy of 35 MeV or less, it is intended to be produced using the 203Tl(p,3n)201Pb→201Tl nuclear reaction. In particular, the chemical separation of Tl is a very important element, and the chemical separation methods that can separate it is broadly divided into four types, including solid phase extraction, liquid-liquid, electrochemical, and ion exchange membrane separation. Some chemical separations require additional separation steps, such as methods using selective adsorption. Therefore, this technical report describes four chemical separation methods and seeks to separate high-purity 201Tl using a method without additional separation steps
-
In recent years, radiation has become a socially important issue, increasing the need for accurate prediction of radiation levels. In this study, machine learning-based models such as Multiple Linear Regression (MLR), Random Forest (RF), XGBoost, and LightGBM, which predict the dose rate by time(nSv h-1) by selecting only important variables, were used, and the correlation between temperature, humidity, cumulative precipitation, wind direction, wind speed, local air pressure, sea pressure, solar radiation, and radiation dose rate (nSv h-1) was analyzed by collecting weather data and radiation dose rate for about 6 months in Jangseong, Jeollanam-do. As a result of the evaluation based on the RMSE (Root Mean Squared Error) and R-Squared (R-Squared coefficient of determination) scores, the RMSE of the XGBoost model was 22.92 and the R-Squared was 0.73, showing the best performance among the models used. As a result of optimizing hyperparameters of all models using the GridSearch method and comparing them by adding variables inside the measuring instrument, it was confirmed that the performance improved to 2.39 for RMSE and 0.99 for R-Squared in both XGBoost and LightGBM.