DOI QR코드

DOI QR Code

Substrate-integrated-waveguide cavity-backed circularly polarized antenna with enhanced bandwidth and gain

  • Shankaragouda M. Patil (Department of Communication Engineering, School of Electronics Engineering (SENSE), Vellore Institute of Technology) ;
  • Rajeshkumar Venkatesan (Department of Communication Engineering, School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT))
  • Received : 2023.01.31
  • Accepted : 2023.08.26
  • Published : 2024.06.20

Abstract

We propose a method for increasing the bandwidth of a substrate-integrated-waveguide (SIW) cavity-backed antenna with taper-based micro-strip SIW transition feeding. For radio transmission, a circular slot is etched on top of the SIW cavity. For optimal antenna design, the slot is etched slightly away from the cavity center to generate circularly polarized waves. Simulations show a wide axial ratio bandwidth of 7.860% between 11.02 GHz and 11.806 GHz. Experimental results confirm a similar wide axial ratio bandwidth of 4.9% between 10.8 GHz and 11.35 GHz. An SIW feed from an inductive window excites the radiating circular slot, resulting in a simulated wide impedance range of 1.548 GHz (10.338 GHz-11.886 GHz) and bandwidth of 13.93%. Experimental results show a wide impedance of 2.08 GHz (10.2 GHz-12.08 GHz) and bandwidth of 18.84%. The SIW cavity-backed antenna creates a unidirectional pattern, leading to gains of 6.61 dBi and 7.594 dBi in simulations and experiments, respectively. The proposed antenna was fabricated on a Rogers RT/Duroid 5880 substrate, and the reflection coefficient, radiation patterns, and gains were tested and compared using a computer simulator. The developed broadband antenna seems suitable for X-band applications.

Keywords

Acknowledgement

The authors appreciate the support and facilities offered by Vellore Institute of Technology, Vellore, India, to carry out this research.

References

  1. M. Bozzi, A. Georgiadis, and K. Wu, Review of substrate-integrated waveguide circuits and antennas, IET Microw. Antenn. Propag. 5 (2011), 909-920.
  2. G. Q. Luo, Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, Bandwidth-enhanced low-profile cavity-backed slot antenna by using hybrid SIW cavity modes, IEEE Trans. Antenn. Propag. 60 (2012), no. 4, 1698-1704.
  3. G. Q. Luo, Z. F. Hu, Y. Liang, L. Y. Yu, and L. L. Sun, Development of low profile cavity backed crossed slot antennas for planar integration, IEEE Trans. Antenn. Propag. 57 (2009), no. 10, 2972-2979.
  4. J. X. Li, G. Q. Luo, Y. Liang, W. J. Li, L. X. Dong, and L. L. Sun, Cavity backed dual slot antenna for gain improvement, Microw. Opt. Technol. Lett. 52 (2010), no. 12, 2767- 2769.
  5. S. Mukherjee, A. Biswas, and K. V. Srivastava, Broadband substrate integrated waveguide cavity-backed bow-tie slot antenna, IEEE Antenn. Wirel. Propag. Lett. 13 (2014), 1152-1155.
  6. Y. J. Cheng and Y. Fan, Millimeter-wave miniaturized substrate integrated multibeam antenna, IEEE Trans. Antenn. Propag. 59 (2011), no. 12, 4840-4844.
  7. A. Kumar and S. Raghavan, Broadband SIW cavity-backed triangular-ring-slotted antenna for ku-band applications, AEUInt. J. Electron. Commun. 87 (2018), 60-64.
  8. A. Kumar, M. Saravanakumar, and S. Raghavan, Dual-frequency SIW-based cavity-backed antenna, AEU-Int. J. Electron. Commun. 97 (2018), 195-201.
  9. K. Kumar, S. Dwari, and S. Priya, Dual band dual polarized cavity backed cross slot half mode substrate integrated waveguide antenna, (IEEE Applied Electromagnetics Conference (AEMC), Aurangabad, India), 2017, pp. 1-2.
  10. S. Mukherjee and A. Biswas, Design of dual band and dua-lpolarised dual band SIW cavity backed bow-tie slot antennas, IET Microw. Antenn. Propag. 10 (2016), no. 9, 1002-1009.
  11. G. Q. Luo, Z. F. Hu, L. X. Dong, and L. L. Sun, Planar slot antenna backed by substrate integrated waveguide cavity, IEEE Antenn. Wirel. Propag. Lett. 7 (2008), 236-239.
  12. M. Mbaye, J. Hautcoeur, L. Talbi, and K. Hettak, Bandwidth broadening of dual-slot antenna using substrate integrated waveguide (SIW), IEEE Antenn. Wirel. Propag. Lett. 12 (2013), 1169-1171.
  13. D.-F. Guan, Z.-P. Qian, Y.-S. Zhang, and Y. Cai, Novel SIW cavity-backed antenna array without using individual feeding network, IEEE Antenn. Wirel. Propag. Lett. 13 (2014), 423-426.
  14. A. Kumar and S. Raghavan, Wideband slotted substrate integrated waveguide cavity-backed antenna for ku-band application, Microw. Opt. Technol. Lett. 59 (2017), no. 7, 1613-1619.
  15. H. Dashti and M. H. Neshati, Development of low-profile patch and semi-circular SIW cavity hybrid antennas, IEEE Trans. Antenn. Propag. 62 (2014), no. 9, 4481-4488.
  16. G. Q. Luo, X. H. Zhang, L. X. Dong, W. J. Li, and L. L. Sun, A gain enhanced cavity backed slot antenna using high order cavity resonance, J. Electromagnet. Waves Appl. 25 (2011), no. 8-9, 1273-1279.
  17. R. Bayderkhani, K. Forooraghi, and B. Abbasi-Arand, Gainen-hanced SIW cavity-backed slot antenna with arbitrary levels of inclined polarization, IEEE Antenn. Wirel. Propag. Lett. 14 (2014), 931-934.
  18. D. Chaturvedi, A. A. Althuwayb, and A. Kumar, Bandwidth enhancement of a planar SIW cavity-backed slot antenna using slot and metallic-shorting via, Appl. Phys. A 128 (2022), no. 3, 193.
  19. A. Kumar, Wideband circular cavity-backed slot antenna with conical radiation patterns, Microw. Opt. Technol. Lett. 62 (2020), no. 6, 2390-2397.
  20. T. Deckmyn, S. Agneessens, A. C. F. Reniers, A. B. Smolders, M. Cauwe, D. Vande Ginste, and H. Rogier, A novel 60 GHz wideband coupled half-mode/quarter-mode substrate integrated waveguide antenna, IEEE Trans. Antenn. Propag. 65 (2017), no. 12, 6915-6926.
  21. D.-Y. Kim, J. W. Lee, T. K. Lee, and C. S. Cho, Design of SIW cavity-backed circular-polarized antennas using two different feeding transitions, IEEE Trans. Antenn. Propag. 59 (2011), no. 4, 1398-1403. 
  22. S. A. Razavi and M. H. Neshati, Development of a low-profile circularly polarized cavity-backed antenna using HMSIW technique, IEEE Trans. Antenn. Propag. 61 (2012), no. 3, 1041-1047.
  23. Q. Wu, H. Wang, C. Yu, and W. Hong, Low-profile circularly polarized cavity-backed antennas using SIW techniques, IEEE Trans. Antenn. Propag. 64 (2016), no. 7, 2832-2839.
  24. E.-Y. Jung, J. W. Lee, T. K. Lee, and W.-K. Lee, SIW-based array antennas with sequential feeding for x-band satellite communication, IEEE Trans. Antenn. Propag. 60 (2012), no. 8, 3632-3639.
  25. A. Kumar and S. Raghavan, Design of a broadband planar cavity-backed circular patch antenna, AEU-Int. J. Electron. Commun. 82 (2017), 413-419.
  26. T. Zhang, W. Hong, Y. Zhang, and K. Wu, Design and analysis of SIW cavity backed dual-band antennas with a dual-mode triangular-ring slot, IEEE Trans. Antenn. Propag. 62 (2014), no. 10, 5007-5016.
  27. B. Lokeshwar, D. Venkatasekhar, and A. Sudhakar, Wideband low-profile SIW cavity-backed bilateral slots antenna for x-band application, Progr. Electromagnet. Res. M 97 (2020), 157-166.
  28. D. Kim, J. W. Lee, C. S. Cho, and T. K. Lee, X-band circular ring-slot antenna embedded in single-layered SIW for circular polarisation, Electron. Lett. 45 (2009), no. 13, 668-669.
  29. H. A. Ali, E. Massoni, L. Silvestri, M. Bozzi, L. Perregrini, and A. Gharsallah, Increasing the bandwidth of cavity-backed SIW antennas by using stacked cavities, Int. J. Microw. Wirel. Technol. 10 (2018), no. 8, 942-947.
  30. B. Lokeshwar, D. Venkatasekhar, and A. Sudhakar, Dual-band low profile SIW cavity-backed antenna by using bilateral slots, Progr. Electromagnet. Res. C 100 (2020), 263-273.
  31. A. Kumar, D. Chaturvedi, and S. Raghavan, Siw cavity-backed circularly polarized square ring slot antenna with wide axialratio bandwidth, AEU-Int. J. Electron. Commun. 94 (2018), 122-127.
  32. J. Lacik, Circularly polarized SIW square ring-slot antenna for x-band applications, Microw. Opt. Technol. Lett. 54 (2012), no. 11, 2590-2594.
  33. J. Hao, P. Qi, J. Fan, and Y. Guo, Analysis of shielding effectiveness of enclosures with apertures and inner windows with TLM, Progr. Electromagnet. Res. M 32 (2013), 73-82.
  34. T. Rozzi, A. Morini, F. Ragusini, and M. Mongiardo, Analytical solution and frequency extraction of iris problems in waveguide by separation of variables, IEEE Trans. Microw. Theory Techniq. 45 (1997), no. 2, 253-259.