DOI QR코드

DOI QR Code

Adaptive threshold for discrete fourier transform-based channel estimation in generalized frequency division multiplexing system

  • Vincent Vincent (School of Electrical Engineering and Informatics, Institut Teknologi Bandung) ;
  • Effrina Yanti Hamid (School of Electrical Engineering and Informatics, Institut Teknologi Bandung) ;
  • Al Kautsar Permana (Politeknik STMI Jakarta, Ministry of Industry)
  • Received : 2023.01.05
  • Accepted : 2023.06.07
  • Published : 2024.06.20

Abstract

Even though generalized frequency division multiplexing is an alternative waveform method expected to replace the orthogonal frequency division multiplexing in the future, its implementation must alleviate channel effects. Least-squares (LS), a low-complexity channel estimation technique, could be improved by using the discrete Fourier transform (DFT) without increasing complexity. Unlike the usage of the LS method, the DFT-based method requires the receiver to know the channel impulse response (CIR) length, which is unknown. This study introduces a simple, yet effective, CIR length estimator by utilizing LS estimation. As the cyclic prefix (CP) length is commonly set to be longer than the CIR length, it is possible to search through the first samples if CP is larger than a threshold set using the remaining samples. An adaptive scale is also designed to lower the error probability of the estimation, and a simple signal-to-interference-noise ratio estimation is also proposed by utilizing a sparse preamble to support the use of the scale. A software simulation is used to show the ability of the proposed system to estimate the CIR length. Due to shorter CIR length of rural area, the performance is slightly poorer compared to urban environment. Nevertheless, satisfactory performance is shown for both environments.

Keywords

References

  1. W. Xiang, K. Zheng, and X. S. Shen, 5G mobile communications, Springer, Switzerland, 2016.
  2. J. Nadal, Filtered multi carrier waveforms in the context of 5G: novel algorithms and architecture optimizations, available at https://theses.hal.science/tel-01829015
  3. V. Vakilian, T. Wild, F. Schaich, S. Tem Brink, and J. F. Frigon, Universal-filtered multi-carrier technique for wireless systems beyond LTE, (IEEE Global Communication Conference, Atlanta, GA, USA), 2013, pp. 223-228.
  4. N. Michailow, M. Matthe, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, and A. Festag, Generalized frequency division multiplexing for 5th generation cellular networks, IEEE Trans. Commun. 62 (2014), no. 9, 3045-3061. https://doi.org/10.1109/TCOMM.2014.2345566
  5. O. E. Ijiga, O. O. Ogunfile, D. Familua, and D. J. J. Versfeld, Review of channel estimation for candidate waveforms of next generation networks, Electronics 8 (2019), no. 956, 1-50.
  6. R. A. Kumar and K. S. Prasad, Comparative analysis of OFDM, FBMC, UFMC & GFDM for 5G wireless communications, Int. J. Adv. Sci. Technol. 29 (2020), no. 5, 2097-2108.
  7. E. Mansour Shalaby, S. Ibrahim Hussin, and M. Ibrahim Dessoky, Performance evaluation of 5G modulation techniques, Wirel. Pers. Commun. 121 (2021), no. 4, 2461-2476. https://doi.org/10.1007/s11277-021-08831-3
  8. S. Ehsanfar, M. Matthe, D. Zhang, and G. Fettweis, A study of pilot-aided channel estimation in MIMO-GFDM systems, (International ITG Workshop on Smart Antennas, Munich, Germany), 2016.
  9. S. Ehsanfar, M. Matthe, D. Zhang, and G. Fettweis, Theoretical analysis and CRLB evaluation for pilot-aided channel estimation in GFDM, (IEEE Global Communication Conference, Washington, DC. USA), 2016, pp. 1-7. https://doi.org/10.1109/GLOCOM.2016.7842323
  10. Y. Wang and P. Fortier, Polynomial expansion-based MMSE channel estimation for massive MIMO-GFDM systems, (IEEE Vehicular Technology Conference, Victoria, Canada), 2020, pp. 1-7. https://doi.org/10.1109/VTC2020-Fall49728.2020.9348717
  11. U. Vilaipornsawai and M. Jia, Scattered-pilot channel estimation for GFDM, (IEEE Wireless Communications and Networking Conference, Istanbul, Turkey), 2014, pp. 1053-1058. https://doi.org/10.1109/WCNC.2014.6952274
  12. C. L. Tai, B. Su, and C. Jia, Interference-precancelled pilot design for LMMSE channel estimation of GFDM, (IEEE Workshop on Signal Processing Advances in Wireless Communications, Atalanta, GA, USA), 2020, pp. 1-5. https://doi.org/10.1109/SPAWC48557.2020.9154242
  13. S. Ehsanfar, M. Matthe, D. Zhang, and G. Fettweis, Interference-free pilots insertion for MIMO-GFDM channel estimation, (IEEE Wireless Communications and Networking Conference, San Francisco, CA, USA), 2017, pp. 1-6. https://doi.org/10.1109/WCNC.2017.7925957
  14. M. Jamalabdollahi and S. Salari, RLS-based estimation and tracking of frequency offset and channel coefficients in MIMO-OFDM systems, Wirel. Pers. Commun. 71 (2013), 1159-1174. https://doi.org/10.1007/s11277-012-0867-0
  15. J. Martins, F. Conceicao, M. Gomes, V. Silva, and R. Dinis, Joint channel estimation and synchronization techniques for time-interleaved block-windowed burst OFDM, Appl. Sci. 11 (2021), no. 10, 1-16.
  16. A. K. Permana and E. Y. Hamid, Performance evaluation of GFDM channel estimation using DFT for tactile internet application, Electronics 10 (2021), no. 5, 1-13.
  17. J. Liu, Be cautious when using the FIR channel model with the OFDM-based communication systems, IEEE Trans. Veh. Technol. 58 (2009), no. 3, 1607-1612. https://doi.org/10.1109/TVT.2008.928897
  18. H. R. Park, A low-complexity channel estimation for OFDM systems based on CIR length adaptation, IEEE Access 10 (2022), 85941-85951. https://doi.org/10.1109/ACCESS.2022.3198962
  19. N. Michailow, S. Krone, M. Lentmaier, G. Fettweis, Bit error rate performance of generalized frequency division multiplexing, (IEEE Vehicular Technology Conference, Quebec City, Canada), 2012, pp. 1-5. https://doi.org/10.1109/VTCFall.2012.6399305
  20. Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM wireless communication with MATLAB, John Wiley and Sons, City, Singapore, 2010.
  21. R. D. Yates and D. J. Goodman, Probability and stochastic processes: A friendly introduction for electrical and computer engineers, 2nd ed., John Wiley and Sons, City, Singapore, 2005.