DOI QR코드

DOI QR Code

Analysis of Susceptibility Artifact Reduction in Titanium Alloy Implant Fixture with Bandwidth Variation in MRI Scans

자기공명영상검사에서 수신대역폭 변화에 따른 티타늄 합금 임플란트 지대주의 자화율 인공물 감소 분석

  • Min-Ho Lee (Department of Radiological Science, College of Health Sciences, Eulji University) ;
  • Jun-Young Yoon (Department of Radiological Science, College of Health Sciences, Eulji University) ;
  • Young-Yun Jo (Department of Radiological Science, College of Health Sciences, Eulji University) ;
  • Chan-Woo Lee (Department of Radiological Science, College of Health Sciences, Eulji University) ;
  • Jae-Hu Byeon (Department of Diagnostic Radiology, Kyung-Hee University Hospital at Gang-dong) ;
  • Yeong-Cheol Heo (Department of Radiological Science, College of Health Sciences, Eulji University)
  • 이민호 (을지대학교 보건과학대학 방사선학과) ;
  • 윤준영 (을지대학교 보건과학대학 방사선학과) ;
  • 조영윤 (을지대학교 보건과학대학 방사선학과) ;
  • 이찬우 (을지대학교 보건과학대학 방사선학과) ;
  • 변재후 (강동경희대학교병원 영상의학과) ;
  • 허영철 (을지대학교 보건과학대학 방사선학과)
  • Received : 2024.10.15
  • Accepted : 2024.11.30
  • Published : 2024.11.30

Abstract

The purpose of this study was to quantitatively analyze the effect of Bandwidth changes on susceptibility artifacts in MRI scans. A custom-made phantom was designed with an implanted dental fixture, and the examination was conducted using a 3.0 Tesla MRI and a Turbo Spin Echo sequence, with the Bandwidth increased incrementally from about 150 Hz/Px to 500 Hz/Px. The results demonstrated that as the Bandwidth increased, the length of the susceptibility artifact significantly decreased. This finding suggests that adjusting Bandwidth can effectively reduce susceptibility artifacts in MRI scans of patients with dental implants. Further research applying these findings to different implant materials is expected to broaden the clinical applicability of this method.

본 연구에서는 수신대역폭의 변화가 자화율 인공물에 미치는 영향을 정량적으로 분석하고자 하였다. 자체 제작한 팬텀에 임플란트 지대주를 설치하고 3.0 Tesla MRI와 고속스핀에코 시퀀스를 이용하여 수신대역폭을 약 150 Hz/Px에서 500 Hz/Px까지 증가시켜 검사하였다. 연구 결과 수신대역폭을 증가할수록 자화율 인공물의 길이가 유의미하게 감소하는 경향을 보였다. 따라서 임플란트가 삽입된 환자의 MRI 검사에서 수신대역폭 조정이 자화율 인공물을 줄여줄 수 있음을 의미하며 추후 다양한 임플란트 재질에 적용하는 추가 연구를 통해 더 넓은 임상적 적용 가능성을 제시할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2024 을지대학교 대학혁신지원사업지원을 받아 진행한 연구임

References

  1. J. I. Ryu, J. E. Jeon, "Utilization rate of dental implant for elderly in National Health Insurance in Korea", The Journal of the Korean Dental Association, Vol. 57, No. 9, pp. 496-503, 2019. https://doi.org/10.22974/jkda.2019.57.9.001
  2. J. S. Hong, H. J. Lee, "Change of oral health education and working environment after national health insurance coverage of dental implant in dental hygienist", Journal of Korean society of oral health science, Vol. 9, No. 2, pp. 1-8, 2021. https://doi.org/10.33615/jkohs.2021.9.2.1
  3. J. S. Choi, D. S. Ma, "The financial estimate of dental implant treatment about the National Health Insurance coverage for the Korean young adults", Journal of Korean Academy Oral Heath, Vol. 44, No. 2, pp. 91-96, 2020. https://doi.org/10.11149/jkaoh.2020.44.2.91
  4. S. H. Suk, "The importance of geriatric neurology in Korea becoming a super-aged society", Journal of Geriatric Neurology, Vol. 1, No. 1, pp. 2-10, 2022. https://doi.org/10.53991/jgn.2022.00045
  5. H. M. Song, J. W. Kim, H. W. Yoon, S. T. Lee, "Vertical alveolar ridge augmentation using fixture-supported titanium-mesh: case series", The journal of the Korean dental association, Vol. 62, No. 7, pp. 422-431, 2024. https://doi.org/10.22974/jkda.2024.62.7.001
  6. L. Bohner, D. Dirksen, M. Hanisch, N. Sesma, J. Kleinheinz, N. Meier, "Artifacts in magnetic resonance imaging of the head and neck: Unwanted effects caused by implant-supported restorations fabricated with different alloys", Journal of Prosthetic Dentistry, 2023. https://doi.org/10.1016/j.prosdent.2023.08.018
  7. G. Xiaomeng, W. Qianbing, G. Qingping, "Susceptibility artifacts induced by crowns of different materials with prepared teeth and titanium implants in magnetic resonance imaging", Scientific Reports, Vol. 12, No. 1, pp. 428-438, 2022. https://doi.org/10.1038/s41598-021-03962-w
  8. S. M. Kim, "Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis", Journal of Technologic Dentistry, Vol. 46, No. 2, pp. 21-27, 2024. https://doi.org/10.14347/jtd.2024.46.2.21
  9. M. H. Hong, "Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis", Journal of Technologic Dentistry, Vol. 42, No. 4, pp. 348-354, 2020. https://doi.org/10.14347/jtd.2020.42.4.348
  10. J. J. Woo, M. S. Kim, B. H. Koo, "Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution", Composites Research, Vol. 33, No. 4, pp. 185-190, 2020. https://doi.org/10.7234/composres.2020.33.4.185
  11. L. N. Carter, O. Addison, Na. Naji, P. Seres, A. H. Wilman, D. E. T. Shepherd, L. Grover, S. Cox, "Reducing MRI susceptibility artefacts in implants using additively manufactured porous Ti-6Al-4V structures", Acta biomaterialia, Vol. 107, pp. 338-348, 2020. https://doi.org/10.1016/j.actbio.2020.02.038
  12. T. W. Redpath, "Signal-to-noise ratio in MRI", The British Journal of Radiology, Vol. 71, No. 847, pp.704-707, 1998.
  13. B. L. Schmitz, A. J. Aschoff, M. H. K. Hoffmann, G. Gron, "Advantages and pitfalls in 3T MR brain imaging: a pictorial review", American journal of Neuroradiology, Vol. 26, No. 9, pp. 2229-2237, 2005.
  14. G. C. Feuerriegel, R. Sutter, "Managing hardware-related metal artifacts in MRI: current and evolving techniques", Skeletal Radiology, Vol. 53, No. 9, pp. 1737-1750, 2024. https://doi.org/10.1007/s00256-024-04624-4
  15. T. Allkemper, P. Reimer, G. Schuierer, P. E. Peters. "Study of susceptibility-induced artefacts in GRASE with different echo train length", European Radiology, Vol. 8, No. 5, pp. 834-838, 1998. https://doi.org/10.1007/s003300050481
  16. S. H. Kolind, A. L. Mackay, P. L. Munk, Q. S. Xiang, "Quantitative evaluation of metal artifact reduction techniques", Journal of Magnetic Resonance Imaging, Vol. 20, No. 3, pp. 487-495, 2004. https://doi.org/10.1002/jmri.20144
  17. S. Ahlawat, S. E. Stern, A. J. Belzberg, J. Fritz. "High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants", Skeletal Radiology, Vol. 46, No. 7, pp. 897-908, 2017. https://doi.org/10.1007/s00256-017-2630-9
  18. D. Andreas, S. Ferdinand, R. R. Jurgen, "Overview of quantitative susceptibility mapping", NMR in Biomedicine, Vol. 30, No. 4, pp. e3569, 2017. https://doi.org/10.1002/nbm.3569
  19. E. M. Haacke, S. Liu, S. Buch, et al, "Quantitative susceptibility mapping: current status and future directions", Magnetic resonance imaging, Vol. 33, No. 1, pp. 1-25, 2015. https://doi.org/10.1016/j.mri.2014.09.004