DOI QR코드

DOI QR Code

Analysis of Gamma Radionuclides in K-MILK Certified Milk

K-MILK 인증 우유의 감마핵종 분석

  • Hee-Jin Jang (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Hyo-Jin Kim (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Yong-Uk Kye (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Ji Eun Lee (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Dong-Yeon Lee (Department of Radiological Science, Dong-eui University) ;
  • Yeong-Rok Kang (Research Center, Dongnam Institute of Radiological & Medical Sciences)
  • Received : 2024.10.24
  • Accepted : 2024.11.30
  • Published : 2024.11.30

Abstract

After the Fukushima nuclear accident, interest in radioactive intake through food has increased significantly. Radioactivity is colorless, tasteless, and odorless, making it very difficult to determine whether it is contaminated, and it is important to check the radioactive safety of food as it can lead to long-term exposure during intake and absorption. In particular, children have more active metabolic activities than adults, so the risk of absorption after intake is judged to be high, so stricter acceptance standards are applied. Nevertheless, there is not little anxiety about radioactive contamination. Therefore, this study aims to confirm radioactive safety by analyzing gamma nuclides of milk with the highest intake in infancy in all ages based on 2021 national nutrition statistics. Samples were selected from 10 domestic milk types made of 100% domestic raw materials through K-MILK certification. Sample analysis was conducted according to the radioactive test method of 'Standards and Specifications for Food'. As a result of the analysis, all 10 types of milk nuclides 131I, 134Cs, 137Cs were determined to be less than MDA(Minimum Detectable Activity) and were not detected. Therefore, it is judged that there is no contamination of 131I, 134Cs, and 137Cs nuclides in milk made from domestic raw materials, and when the annual intake dose of milk was conservatively evaluated using the measured MDA value, the radioactive safety of domestic milk was confirmed at 0.001% of the annual effective dose limit.

후쿠시마 원전 사고 이후 식품을 통한 방사능 섭취에 대한 관심이 매우 증가하였다. 방사능은 무색, 무미, 무취의 성질로 오염 여부를 판단하기 매우 어렵고, 섭취, 흡수 시에는 장기간 피폭으로 이어질 수 있어 식품의 방사능 안전을 확인하는 것은 중요하다. 특히 어린아이의 경우 성인에 비해 활발한 대사 활동을 하기 때문에 섭취 후 흡수에 대한 위험도가 크다고 판단되어 성인보다 엄격한 허용 기준을 적용하고 있다. 그럼에도 불구하고 방사능 오염에 대한 불안을 적지 않다. 이에 본 연구에서는 2021년 국민영양통계를 기준으로 전 연령에서 영유아기에 가장 섭취량이 많은 우유의 감마핵종을 분석하여 방사능 안전을 확인하고자 한다. 시료는 K-MILK 인증을 통해 국산 원료 100%로 제작된 국내 우유 10 종을 선정하였다. 시료 분석은 '식품의 기준 및 규격'의 방사능 시험 검사 방법에 따라 진행되었다. 분석 결과 10 종의 우유 모두 131I, 134Cs, 137Cs 핵종이 MDA(최초검출가능농도) 미만의 값으로, 불검출로 판단하였다. 이에 국산 원료로 제조된 우유에서 131I, 134Cs, 137Cs 핵종의 오염은 없는 것으로 판단되며 측정된 MDA 값을 이용하여 보수적으로 우유의 연간 섭취선량을 평가하였을 때 연간 유효선량한도의 0.001% 수준으로 국내 우유의 방사능 안전을 확인하였다.

Keywords

Acknowledgement

This work was supported by the Dongnam Institute of Radiological & Medical Sciences(DIRAMS) grant funded by the Korea government(MSIT) (No. 50491-2024)

References

  1. H. Yoon, J Seo, T Kim, J Kim, A Jo, B Lee, H Lim, D Lee, P Kim, K Choi, W Yang, "Development of Korean exposure factors for children in Korea", Journal of Environmental Health Sciences Vol. 43, No. 3, pp. 167-175, 2017. https://doi.org/10.5668/jehs.2017.43.3.167 
  2. Bennett, Burton, Michael Repacholi, Zhanat Carr, "Health effects of the Chernobyl accident and special health care programmes", Report of the UN Chernobyl Forum Expert Group "Health". Geneva: World Health Organization, 2006. https://controverses.minesparis.psl.eu/prive/promo05/C05B7/Acteurs/who_chernobyl_report_2006.pdf 
  3. V. K. Ivanov, A. I. Gorski, M. A. Maksioutov, O. K. Vlasov, A. M. Godko, A. F. Tsyb, M. Tirmarche, M. Valenty, P. Verger, "Thyroid cancer incidence among adolescents and adults in the Bryansk region of Russia following the Chernobyl accident", Health physics, Vol. 84, No. 1, pp. 46-60, 2003. https://doi.org/10.1097/00004032-200301000-00004 
  4. P. W. Dickman, L. E. Holm, G. Lundell, J. D. Boice, P. Hall, "Thyroid cancer risk after thyroid examination with 131I: a population-based cohort study in Sweden", International Journal of Cancer, Vol. 106, No. 4, pp. 580-587, 2003. https://doi.org/10.1002/ijc.11258 
  5. K. A. Tumanov, N. V. Shchukina, V. K. Ivanov, A. F. Tsyb, S. Yu. Chekin, V. V. Kashcheev, O. K. Vlasov, M. A. Maksioutov, "Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991-2008 follow-up period)", Radiation Protection Dosimetry, Vol. 151, No. 3, pp. 489-499, 2012. https://doi.org/10.1093/rpd/ncs019 
  6. M. D. Tronko, G. R. Howe, T. I. Bogdanova, A. C. Bouville, O. V. Epstein, A. B. Brill, I. A. Likhtarev, D. J. Fink, V. V. Markov, E. Greenebaum, et al., "A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening", Journal of the National Cancer Institute, Vol. 98, No. 13, pp. 897-903, 2006. https://doi.org/10.1093/jnci/djj244 
  7. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation (UNSCEAR 2008 Report to the General Assembly with Scientific Annexes C, D and E), Vol. II. New York (NY, pp. United Nations; 2011. https://www.unscear.org/unscear/en/publications/2008_2.html 
  8. F. A. O. Joint, World Health Organization, "Criteria for Radionuclide Activity Concentrations for Food and Drinking Water, No. IAEA-TECDOC-1788", Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 2016. https://inis.iaea.org/
  9. 2021 National Nutrition Statistics, Korea Health Industry Development Institute, https://www.khidi.or.kr/nutristat 
  10. Standards and Specifications for Food, "Ministry of Food and Drug Safety Notification, Chapter 2. Common standards and specifications for general, 3. Standards and specifications for general food", 2024 
  11. The milk fund management committee. https://imilk.or.kr/
  12. Standards and Specifications for Food, "No 8.General Test Method, 9.harmful substance Test Method, 9.9 Radioactivity", 2024. 
  13. K. Eckerman, J. Harrison, H. G. Menzel, C. H. Clement, "ICRP publication 119: compendium of dose coefficients based on ICRP publication 60", Annals of the ICRP, Vol. 41, pp. 1-130, 2012. https://doi.org/10.1016/j.icrp.2012.06.038 
  14. W. J. Ju, J. Y. Na, "Survey monitoring of environmental radioactivity in Gwangju area. No. KINS/HR--085 (V. 9)", Korea Institute of Nuclear Safety, 2001. https://inis.iaea.org/search/search.aspx?orig_q=RN:37062863 
  15. S. H. Lee, J. S. Oh, K. B. Lee, J. M. Lee, S. H. Hwang, M. K. Lee, E. H. Kwon, C. S. Kim, I. H. Choi, I. Y. Yeo, J. Y. Yoon, J. M. Im, "Evaluation of abundance of artificial radionuclides in food products in South Korea and sources", Journal of Environmental Radioactivity, Vol. 184, pp. 46-52, 2018. https://doi.org/10.1016/j.jenvrad.2018.01.008 
  16. Kang, Tae-Woo, Kyung Hong, and Won-Pyo Park. "137Cs and 40K Activities of Foodstuffs Consumed in Jeju." Korean Journal of Environmental Agriculture, Vol. 23, No. 1, pp. 52-58, 2004. https://doi.org/10.5338/KJEA.2004.23.1.052