Acknowledgement
This work was supported by the Scientific Research Projects Department of Istanbul Technical University Project Number: MAB2022-44108. The authors would also like to thank Prof. Sevilay Haciyakupoglu for her valuable advice.
References
- O. Pourret, M.-P. Faucon, Cobalt, in: W.M. White (Ed.), Encyclopedia of Geochemistry, Springer, Cham, 2016, pp. 1-3, https://doi.org/10.1007/978-3-319-39193-9_271-1.
- Cobalt. www.atsdr.cdc.gov/, 2004. (Accessed 6 February 2024).
- Screening Assessment Cobalt and Cobalt-Containing Substances, 2017 ec.gc.ca/ese-ees/DCEB359C-245F-4A06-B2E5-62887D47C806/EN_Cobalt%20FSAR% 20FINAL%20mai%2025%202017%20.pdf. (Accessed 6 February 2024).
- S. Lin, X. Pan, D. Meng, T. Zhang, Electric conversion treatment of cobalt-containing wastewater, Water Sci. Technol. 83 (2021) 1973-1986, https://doi.org/ 10.2166/wst.2021.101.
- M.I. Ojovan, W.E. Lee, S.N. Kalmykov, Short-lived waste radionuclides, in: M. I. Ojovan, W.E. Lee, S.N. Kalmykov (Eds.), An Introduction to Nuclear Waste Immobilisation, 2019, pp. 145-154, https://doi.org/10.1016/B978-0-08-102702-8.00011-X. Third.
- F. Caron, G. Mankarios, Pre-assessment of the speciation of 60Co, 125Sb, 137Cs and 241Am in a contaminated aquifer, J. Environ. Radioact. 77 (2004) 29-46, https://doi.org/10.1016/J.JENVRAD.2004.02.002.
- D.E. Robertson, A.J. Schilk, K.H. Abel, E.A. Lepel, C.W. Thomas, S.L. Pratt, E. L. Cooper, P. Hartwig, R.W.D. Killey, Chemical speciation of radionuclides migrating in groundwaters, Journal of Radioanalytical and Nuclear Chemistry Articles 194 (1995) 237-252, https://doi.org/10.1007/BF02038420/METRICS.
- T. Shahwan, H.N. Erten, S. Unugur, A characterization study of some aspects of the adsorption of aqueous Co2+ ions on a natural bentonite clay, J. Colloid Interface Sci. 300 (2006) 447-452, https://doi.org/10.1016/J.JCIS.2006.04.069.
- X.H. Fang, F. Fang, C.H. Lu, L. Zheng, Removal of Cs+, Sr2+, and Co2+ ions from the Mixture of Organics and Suspended solids aqueous solutions by Zeolites, Nucl. Eng. Technol. 49 (2017) 556-561, https://doi.org/10.1016/j.net.2016.11.008.
- M. Nakhaei, H.R. Mokhtari, V. Vatanpour, K. Rezaei, Investigating the effectiveness of natural Zeolite (Clinoptilolite) for the removal of lead, cadmium, and cobalt heavy metals in the Western Parts of Iran's Varamin aquifer, Water Air Soil Pollut. 234 (2023), https://doi.org/10.1007/S11270-023-06759-X.
- Z. Liu, Y. guo Zhang, B. Han, Z. chao Tan, Q. hai Li, Adsorption of cobalt(III) by graphene and activated carbon, Can. J. Chem. Eng. 97 (2019) 940-946, https://doi.org/10.1002/CJCE.23251.
- I. Ceban, T. Lupascu, S. Mikhalovsky, R. Nastas, Adsorption of cobalt and strontium ions on plant-derived activated carbons: the suggested mechanisms, C-Journal of Carbon Research 9 (2023) 71, https://doi.org/10.3390/C9030071/S1.
- M. Tuzen, K.O. Saygi, C. Usta, M. Soylak, Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions, Bioresour. Technol. 99 (2008) 1563-1570, https://doi.org/10.1016/J.BIORTECH.2007.04.013.
- B. Kiran, K. Thanasekaran, An indigenous cyanobacterium, Lyngbya putealis, as biosorbent: optimization based on statistical model, Ecol. Eng. 42 (2012) 232-236, https://doi.org/10.1016/J.ECOLENG.2012.02.026.
- H. Lopez-Gonzalez, D.M. Sanchez-Nava, M.T. Olguin, Agave salmiana as biosorbent of cobalt and cobalt-nickel ionic species from aqueous solutions, Desalination Water Treat. 278 (2022) 141-146, https://doi.org/10.5004/DWT.2022.29081.
- A.R. Lucaci, L. Bulgariu, Biosorption of technologically valuable metal ions on algae wastes: laboratory studies and applicability, Water (Switzerland) 16 (2024), https://doi.org/10.3390/w16040512.
- A.R. Lucaci, D. Bulgariu, I. Ahmad, G. Lisa, A.M. Mocanu, L. Bulgariu, Potential use of biochar from variouswaste biomass as biosorbent in Co(II) removal processes, Water (Switzerland) 11 (2019), https://doi.org/10.3390/w11081565.
- S. Zhuang, Y. Yin, J. Wang, Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation, Nucl. Eng. Technol. 50 (2018) 211-215, https://doi.org/10.1016/j.net.2017.11.007.
- Y. Zeng, G. Yuan, T. Lan, F. Li, J. Yang, J. Liao, Y. Yang, N. Liu, Synthesis and application of zirconium phosphate mesoporous coordination polymer for effective removal of Co(II) from aqueous solutions, Nucl. Eng. Technol. 54 (2022) 4013-4021, https://doi.org/10.1016/j.net.2022.06.013.
- L. Yu, T. Lan, G. Yuan, C. Duan, X. Pu, N. Liu, Synthesis and application of a novel metal-organic frameworks-based ion-imprinted polymer for effective removal of Co(II) from simulated radioactive wastewater, Polymers 15 (2023), https://doi.org/10.3390/POLYM15092150.
- A.A. Abdelhamid, M.H. Badr, R.A. Mohamed, H.M. Saleh, Using agricultural mixed waste as a sustainable technique for removing stable isotopes and radioisotopes from the aquatic environment, Sustainability 15 (2023), https://doi.org/10.3390/SU15021600.
- K. Nimodia, A. Solanki, L.K. Chauhan, A.K. Goswami, P.K. Baroliya, Wood-industrial waste material as a potential sorbent for the removal of Pb+2 and Co+2 from mono and binary aquatic metal solutions, Orient. J. Chem. 37 (2021) 71-79, https://doi.org/10.13005/OJC/370109.
- J. Warren, Dolomite: occurrence, evolution and economically important associations, Earth Sci. Rev. 52 (2000) 1-81, https://doi.org/10.1016/S0012-8252(00)00022-2.
- A. Zucchini, P. Comodi, A. Katerinopoulou, T. Balic-Zunic, C. McCammon, F. Frondini, Order-disorder-reorder process in thermally treated dolomite samples: a combined powder and single-crystal X-ray diffraction study, Phys. Chem. Miner. 39 (2012) 319-328, https://doi.org/10.1007/s00269-012-0489-9.
- E. Soco, A. Domon, D. Papciak, M.M. Michel, D. Pajak, B. Cieniek, M. Azizi, Characteristics of adsorption/desorption process on dolomite adsorbent in the copper(II) removal from aqueous solutions, Materials 16 (2023), https://doi.org/10.3390/ma16134648.
- N. Yamkate, S. Chotpantarat, C. Sutthirat, Removal of Cd2+, Pb2+, and Zn2+ from contaminated water using dolomite powder, Human and Ecological Risk Assessment 23 (2017) 1178-1192, https://doi.org/10.1080/10807039.2017.1309264.
- A. Gruszecka-Kosowska, P. Baran, M. Wdowin, W. Franus, Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn from aqueous solutions, Environ. Earth Sci. 76 (2017) 1-12, https://doi.org/10.1007/S12665-017-6854-8/TABLES/4.
- A. Emami, A. Rahbar-Kelishami, Zinc and nickel adsorption onto a low-cost mineral adsorbent: kinetic, isotherm, and thermodynamic studies, Desalination Water Treat. 57 (2016) 21881-21892, https://doi.org/10.1080/19443994.2015.1131632.
- A. Ghaemi, M. Torab-Mostaedi, M. Ghannadi-Maragheh, Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder, J. Hazard Mater. 190 (2011) 916-921, https://doi.org/10.1016/J.JHAZMAT.2011.04.006.
- A. Ghaemi, M. Torab-Mostaedi, S. Shahhosseini, M. Asadollahzadeh, Characterization of Ag(I), Co(II) and Cu(II) removal process from aqueous solutions using dolomite powder, Kor. J. Chem. Eng. 30 (2013) 172-180, https://doi.org/10.1007/s11814-012-0113-1.
- M. Mohammadi, A. Ghaemi, M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, Adsorption of cadmium (II) and nickel (II) on dolomite powder, Desalination Water Treat. 53 (2015) 149-157, https://doi.org/10.1080/19443994.2013.836990.
- A.B. Albadarin, C. Mangwandi, A.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N. M. Ahmad, Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent, Chem. Eng. J. 179 (2012) 193-202, https://doi.org/10.1016/J.CEJ.2011.10.080.
- Y. Salameh, N. Al-Lagtah, M.N.M. Ahmad, S.J. Allen, G.M. Walker, Kinetic and thermodynamic investigations on arsenic adsorption onto dolomitic sorbents, Chem. Eng. J. 160 (2010) 440-446, https://doi.org/10.1016/j.cej.2010.03.039.
- E. Pehlivan, A.M. Ozkan, S. Dinc, S, . Parlayici, Adsorption of Cu2+ and Pb2+ ion on dolomite powder, J. Hazard Mater. 167 (2009) 1044-1049, https://doi.org/10.1016/j.jhazmat.2009.01.096.
- S. Kocaoba, Comparison of Amberlite IR 120 and dolomite's performances for removal of heavy metals, J. Hazard Mater. 147 (2007) 488-496, https://doi.org/10.1016/J.JHAZMAT.2007.01.037.
- G.M. Ayoub, M. Mehawej, Adsorption of arsenate on untreated dolomite powder, J. Hazard Mater. 148 (2007) 259-266, https://doi.org/10.1016/J.JHAZMAT.2007.02.011.
- Y.S. Al-Degs, M.I. El-Barghouthi, A.A. Issa, M.A. Khraisheh, G.M. Walker, Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies, Water Res. 40 (2006) 2645-2658, https://doi.org/10.1016/J.WATRES.2006.05.018.
- Z. Khoshraftar, H. Masoumi, A. Ghaemi, An insight into the potential of dolomite powder as a sorbent in the elimination of heavy metals: a review, Case Studies in Chemical and Environmental Engineering 7 (2023), https://doi.org/10.1016/j.cscee.2022.100276.
- Maden Tetkik ve Arama Genel Mudurlugu, Dolomit, (n.d.). https://www.mta.gov.tr/v3.0/bilgi-merkezi/dolomit.
- V. Diwan, S.K. Sar, S. Biswas, R. Lalwani, Adsorptive extraction of uranium(VI) from aqueous phase by dolomite, Groundw Sustain Dev 11 (2020) 100424, https://doi.org/10.1016/J.GSD.2020.100424.
- S. Gunasekaran, G. Anbalagan, Thermal decomposition of natural dolomite, Bull. Mater. Sci. 30 (2007) 339-344. https://doi.org/10.1007/s12034-007-0056-z
- I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38 (1916) 2221-2295, https://doi.org/10.1021/JA02268A002/ASSET/JA02268A002.FP.PNG_V03.
- K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fund. 5 (1966) 212-223, https://doi.org/10.1021/I160018A011.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem 57 (1906) 1100-1107.
- O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem. 63 (1959) 1024, https://doi.org/10.1021/J150576A611/ASSET/J150576A611.FP.PNG_V03.
- F.C. Wu, B.L. Liu, K.T. Wu, R.L. Tseng, A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes, Chem. Eng. J. 162 (2010) 21-27, https://doi.org/10.1016/J.CEJ.2010.03.006.
- Y. Kishi, S. Shigemi, S. Doihara, M.G. Mostafa, K. Wase, Study on the hydrolysis of cobalt ions in aqueous solution, Hydrometallurgy 47 (1998) 325-338. https://doi.org/10.1016/S0304-386X(97)00056-X
- K.C. Sole, J. Parker, P.M. Cole, M.B. Mooiman, Flowsheet options for cobalt recovery in african copper-cobalt hydrometallurgy circuits, Miner. Process. Extr. Metall. Rev. 40 (2019) 194-206, https://doi.org/10.1080/08827508.2018.1514301.