DOI QR코드

DOI QR Code

Effects of mineral composition of aggregates on volume expansion and elastic properties evolution caused by neutron irradiation

  • Weiping Zhang (Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University) ;
  • Hui Liu (Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University) ;
  • Ying Huang (Suzhou Nuclear Power Research Institute Co., Ltd.) ;
  • Kaixing Liao (Department of Structural Engineering, Tongji University) ;
  • Yong Zhou (Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University)
  • Received : 2024.04.01
  • Accepted : 2024.06.17
  • Published : 2024.11.25

Abstract

The radiation-induced volumetric expansion and mechanical properties of different types of irradiated aggregates are affected to varying degrees, and the effects of mineral composition of irradiated aggregates on the volume expansion and elastic modulus are not completely clarified. In this study, the prediction models for the crack volume and effective elastic moduli of irradiated aggregates were established based on the model of the polycrystalline assemblage of minerals and the self-consistent scheme, and the influence of randomness of mineral composition on the volume expansion and effective elastic moduli of irradiated aggregates was further analyzed. The predictions of the RIVE and effective elastic moduli of irradiated aggregates were in good agreement with the test reactor data in the references. The results show that the randomness of volume expansion and effective elastic moduli of irradiated aggregates is dominated by the uncertainty in the crack volume of irradiated aggregates, and it can be estimated for a specific aggregate based on the variability of the quartz content. The findings provide a foundation for predicting the probability-based degradation of mechanical properties of irradiated concrete based on the mineral composition of aggregates.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (Grant No. 2020YFB1901500). The authors also sincerely thank the anonymous reviewers for their thorough reviews and constructive comments and the editors for their selfless contributions to the manuscript processing.

References

  1. K.G. Field, I. Remec, Y. Le Pape, Radiation effects in concrete for nuclear power plants - Part I: quantification of radiation exposure and radiation effects, Nucl. Eng. Des. 282 (2015) 126-143, 10/f6zkxv. 10/f6zkxv
  2. I. Maruyama, O. Kontani, M. Takizawa, S. Sawada, S. Ishikawa, J. Yasukouchi, O. Sato, J. Etoh, T. Igari, Development of soundness assessment procedure for concrete members affected by neutron and gamma-ray irradiation, J. Adv. Concr. Technol. 15 (2017) 440-523, 10/gh6gn6. 10/gh6gn6
  3. Y. Le Pape, J. Sanahuja, M.H.F. Alsaid, Irradiation-induced damage in concrete-forming aggregates: revisiting literature data through micromechanics, Mater. Struct. 53 (2020) 62, 10/gh6gmk.
  4. T.M. Rosseel, I. Maruyama, Yann Le Pape, O. Kontani, A.B. Giorla, I. Remec, J. J. Wall, M. Sircar, C. Andrade, M. Ordonez, Review of the current state of knowledge on the effects of radiation on concrete, J. Adv. Concr. Technol. 14 (2016) 368-383, 10/ghdfzx. https://doi.org/10.3151/jact.14.368
  5. L.F. Elleuch, F. Dubois, J. Rappeneau, Effects of neutron radiation on special concretes and their components, Spec. Publ. 34 (1972) 1071-1108, 10.14359/18107.
  6. H. Hilsdorf, J. Kropp, H. Koch, The Effects of Nuclear Radiation on the Mechanical Properties of Concrete, 55, Spec. Publ., 1978, pp. 223-254.
  7. P.M. Bruck, T.C. Esselman, B.M. Elaidi, J.J. Wall, E.L. Wong, Structural assessment of radiation damage in light water power reactor concrete biological shield walls, Nucl. Eng. Des. 350 (2019) 9-20, 10/gmbjbj. 10/gmbjbj
  8. A. Denisov, V. Dubrovskii, V. Solovyov, Radiation Resistance of Mineral and Polymer Construction Materials, ZAO MEI Publ. House, Moscow, 2012.
  9. M. Vaitova, P. Stemberk, T.M. Rosseel, Fuzzy logic model of irradiated aggregates, Neural Netw. World 29 (2019) 1-18, 10/gh6gn4. 10/gh6gn4
  10. Y. Le Pape, K.G. Field, I. Remec, Radiation effects in concrete for nuclear power plants, Part II: perspective from micromechanical modeling, Nucl. Eng. Des. 282 (2015) 144-157, 10/f6zng4. 10/f6zng4
  11. H. Sasano, I. Maruyama, S. Sawada, T. Ohkubo, K. Murakami, K. Suzuki, Mesoscale modelling of the mechanical properties of concrete affected by radiation-induced aggregate expansion, J. Adv. Concr. Technol. 18 (2020) 648-677, https://doi.org/10.3151/jact.18.651.
  12. Y. Jing, Y. Xi, Theoretical modeling of the effects of neutron irradiation on properties of concrete, J. Eng. Mech. 143 (2017) 04017137, 10/gcqcb7. 10/gcqcb7
  13. C.E. Torrence, A.B. Giorl, Y. Li, E.T. Rodriguez, J.D.A. Mena, T.M. Rosseel, Y. L. Pape, Mosaic: an effective FFT-based numerical method to assess aging properties of concrete, J. Adv. Concr. Technol. 19 (2021) 149-167, 10/gjr32r. 10/gjr32r
  14. A.B. Giorla, M. Vaitova, Y. Le Pape, P. Stemberk, Meso-scale modeling of irradiated concrete in test reactor, Nucl. Eng. Des. 295 (2015) 59-73, 10/f75gm7. 10/f75gm7
  15. A.B. Giorla, Y. Le Pape, C.F. Dunant, Computing creep-damage interactions in irradiated concrete, J. Nanomechanics Micromechanics 7 (2017) 04017001, 10/gh6gnk. 10/gh6gnk
  16. Y. Le Pape, Neutron-irradiation-induced damage assessment in concrete using combined phase characterization and nonlinear fast Fourier transform simulation, Tennessee, in: Proc. 10th Int. Conf. Fract. Mech. Concr. Concr. Struct., US Department of Energy, 2019, pp. 1-10, 10/gmbjfv.
  17. N. Okada, T. Ohkubo, I. Maruyama, K. Murakami, K. Suzuki, Characterization of irradiation-induced novel voids in α-quartz, AIP Adv. 10 (2020) 125212, 10/gmbjb7. 10/gmbjb7
  18. N.M.A. Krishnan, Y. Le Pape, G. Sant, M. Bauchy, Effect of irradiation on silicate aggregates' density and stiffness, J. Nucl. Mater. 512 (2018) 126-136, 10/gfn2sw. 10/gfn2sw
  19. N.M.A. Krishnan, R. Ravinder, R. Kumar, Y.L. Pape, G. Sant, Density-stiffness scaling in minerals upon disordering: irradiation vs. vitrification, Acta Mater. 166 (2019) 611-617, https://doi.org/10.1016/j.actamat.2019.01.015.
  20. N.M.A. Krishnan, Y.L. Pape, G. Sant, M. Bauchy, Disorder-induced expansion of silicate minerals arises from the breakage of weak topological constraints, J. Non-Cryst. Solids 564 (2021) 120846, 10/gjp5d4. 10/gjp5d4
  21. Y.-H. Hsiao, E.C. La Plante, N.M.A. Krishnan, Y. Le Pape, N. Neithalath, M. Bauchy, G. Sant, Effects of irradiation on albite's chemical durability, J. Phys. Chem. A 121 (2017) 7835-7845, 10/gb2bvq. 10/gb2bvq
  22. Y.-H. Hsiao, B. Wang, E.C. La Plante, I. Pignatelli, N.M.A. Krishnan, Y. Le Pape, N. Neithalath, M. Bauchy, G. Sant, The effect of irradiation on the atomic structure and chemical durability of calcite and dolomite, npj Mater. Degrad. 3 (2019), 10/gh6gnm.
  23. W. Zhang, H. Liu, Y. Zhou, K. Liao, Y. Huang, Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete, Nucl. Eng. Technol. 55 (2023) 2147-2157, https://doi.org/10.1016/j.net.2023.03.021.
  24. J. Arregui Mena, J. Weber, M. Tunes, C.E. Torrence, T.M. Rosseel, I. Maruyama, P. Edmondson, Microstructural Characterization of Neutron Irradiated Mineral Concrete Aggregates, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 2021. https://www.osti.gov/biblio/1814304. (Accessed 17 April 2022).
  25. F.J.P. Clarke, Residual strain and the fracture stress-grain size relationship in brittle solids, Acta Metall. 12 (1964) 139-143, 10/d24f46. 10/d24f46
  26. I. Maruyama, T. Kondo, S. Sawada, P. Halodova, A. Fedorikova, T. Ohkubo, K. Murakami, T. Igari, E.T. Rodriguez, K. Suzuki, Radiation-induced alteration of meta-chert, J. Adv. Concr. Technol. 20 (2022) 760-776, https://doi.org/10.3151/jact.20.760.
  27. I. Maruyama, A. Meawad, T. Kondo, S. Sawada, P. Halodova, A. Fedorikova, T. Ohkubo, K. Murakami, T. Igari, E.T. Rodriguez, K. Maekawa, K. Suzuki, Radiation-induced alteration of sandstone concrete aggregate, J. Nucl. Mater. 583 (2023) 154547, https://doi.org/10.1016/j.jnucmat.2023.154547.
  28. F. Chen, C. Gao, L. Jin, X. Du, B. Bary, Y. Le Pape, J. Sanahuja, Numerical investigations on the viscoelastic-damage behaviors of RIVE-induced concrete, Int. J. Mech. Sci. 239 (2023) 107899, https://doi.org/10.1016/j.ijmecsci.2022.107899.
  29. N. Saklani, G. Banwat, B. Spencer, S. Rajan, G. Sant, N. Neithalath, Damage development in neutron-irradiated concrete in a test reactor: hygro-thermal and mechanical simulations, Cement Concr. Res. 142 (2021) 106349, https://doi.org/10.1016/j.cemconres.2020.106349.
  30. A. Cheniour, Y. Li, J. Sanahuja, Y. Le Pape, E. Tajuelo Rodriguez, L.M. Anovitz, K. C. Polavaram, N. Garg, T.M. Rosseel, FFT-based model for irradiated aggregate microstructures in concrete, Mater. Struct. 55 (2022) 214, https://doi.org/10.1617/s11527-022-02010-x.
  31. Y. Oida, S. Sakuragi, T. Igari, Y. Nakajima, E. Ro, F. Shimizu, M. Futami, Y. Hakozaki, T. Ohkubo, H. Ishikawa, S. Takada, S. Sawada, K. Murakami, K. Suzuki, I. Maruyama, Finite element method modeling of expansion of irradiated rocks: focusing on the minerals, arXiv (2022). https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202202204140781214. (Accessed 19 July 2023).
  32. Y. Khmurovska, P. Stemberk, Catalogue of radiation-induced damage of rock aggregates identified by RBSM analysis, J. Adv. Concr. Technol. 19 (2021) 668-686, 10/gqqv63. 10/gqqv63
  33. Y. Khmurovska, P. Stemberk, RBSM-based model for prediction of radiation-induced volumetric expansion of concrete aggregates, Construct. Build. Mater. 294 (2021) 123553, https://doi.org/10.1016/j.conbuildmat.2021.123553.
  34. W.-H. Kang, T.-H. Kwon, H.-T. Kim, K. Park, Design strength evaluation of RC beams under radiation environments for nuclear power plants, Nucl. Eng. Des. 301 (2016) 101-110, 10/f8jwtd. 10/f8jwtd
  35. Y. Le Pape, Structural effects of radiation-induced volumetric expansion on unreinforced concrete biological shields, Nucl. Eng. Des. 295 (2015) 534-548, 10/f75fbs. 10/f75fbs
  36. Y. Le Pape, M.H.F. Alsaid, A.B. Giorla, Rock-forming minerals radiation-induced volumetric expansion - revisiting literature data, J. Adv. Concr. Technol. 16 (2018) 191-209, 10/ghdf5q. 10/ghdf5q
  37. R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solid. 13 (1965) 213-222, 10/cqrmnd. https://doi.org/10.1016/0022-5096(65)90010-4
  38. B. Budiansky, On the elastic moduli of some heterogeneous materials, J. Mech. Phys. Solid. 13 (1965) 223-227, 10/fpbkmp. https://doi.org/10.1016/0022-5096(65)90011-6
  39. E. Kroner, Bounds for effective elastic moduli of disordered materials, J. Mech. Phys. Solid. 25 (1977) 137-155, 10/bqsxvb. https://doi.org/10.1016/0022-5096(77)90009-6
  40. L. Dormieux, D. Kondo, F.-J. Ulm, Microporomechanics, John Wiley & Sons, West Sussex, 2006.
  41. H. Trumel, F. Rabette, F. Willot, R. Brenner, E. Ongari, M. Biessy, D. Picart, Understanding the thermomechanical behavior of a TATB-based explosive via microstructure-level simulations. Part I: microcracking and viscoelasticity, in: Eur. 44th Int. Pyrotech. Semin., Archive Ouverte HAL, Tours, France, 2019, pp. 1-18. https://hal.archives-ouvertes.fr/hal-02312483. (Accessed 14 August 2021).
  42. F. Ouyang, J. Zhao, Z. Li, Z. Xiao, Y. He, H. Zhao, J. Ren, Inversion of pore aspect ratio distribution based on effective medium theories, Chin. J. Geophys. Chin. 64 (2021) 1016-1033, https://doi.org/10.6038/cjg2021O0348.
  43. G. Igarashi, I. Maruyama, Y. Nishioka, H. Yoshida, Influence of mineral composition of siliceous rock on its volume change, Construct. Build. Mater. 94 (2015) 701-709, https://doi.org/10.1016/j.conbuildmat.2015.07.071.
  44. I. Remec, T.M. Rosseel, K.G. Field, Y.L. Pape, Characterization of radiation fields for assessing concrete degradation in biological shields of NPPs, EPJ Web Conf. 153 (2017) 05009, 10/gh6gm4.
  45. W. Primak, Fast-neutron-induced changes in quartz and vitreous silica, Phys. Rev. 110 (1958) 1240-1254, 10/ccdnpk. https://doi.org/10.1103/PhysRev.110.1240
  46. B. Wang, N.M.A. Krishnan, Y. Yu, M. Wang, Y. Le Pape, G. Sant, M. Bauchy, Irradiation-induced topological transition in SiO2: structural signature of networks' rigidity, J. Non-Cryst. Solids 463 (2017) 25-30, 10/gmbjch. 10/gmbjch
  47. I. Maruyama, S. Muto, Change in relative density of natural rock minerals due to electron irradiation, J. Adv. Concr. Technol. 14 (2016) 706-716, 10/gh6gnh. 10/gh6gnh
  48. V.N. Bykov, A.V. Denisov, V.B. Dubrovskii, V.V. Korenevskii, G.K. Krivokoneva, L. P. Muzalevskii, Effect of irradiation temperature on the radiation expansion of quartz, Sov. At, Energy 51 (1981) 593-595, 10/d5m9tp. 10/d5m9tp
  49. Y. Le Pape, A. Giorla, J. Sanahuja, Combined effects of temperature and irradiation on concrete damage, J. Adv. Concr. Technol. 14 (2016) 70-86, 10/gh6gng. 10/gh6gng
  50. S. Arrhenius, uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren, Z. Phys. Chem. 4U (1889) 226-248, 10/gm73bf. 10/gm73bf
  51. G. Krivokoneva, Structural changes in feldspars under impact of radiation, Cryst. Chem. Struct. Featur. Miner. (1976) 75-79.
  52. R.K. Eby, R.C. Ewing, R.C. Birtcher, The amorphization of complex silicates by ion-beam irradiation, J. Mater. Res. 7 (1992) 3080-3102, 10/ckcpqw. 10/ckcpqw
  53. C.M. Silva, T.M. Rosseel, K.S. Holliday, Radiation-induced changes in single crystal calcite and dolomite: mineral analogues of light water reactor, nuclear power plant concrete aggregates, J. Phys. Chem. C 126 (2022) 634-646, 10/gqqv68. 10/gqqv68
  54. G. Mayer, J. Gigon, Effets des neutrons rapides sur quelques constantes physiques du quartz cristallin et de la silice vitreuse, J. Phys. Radium 18 (1957) 109-114, 10/dn988m. 10/dn988m
  55. G. Mayer, M. Lecomte, Effet des neutrons rapides sur le quartz cristallin et la silice vitreuse, J. Phys. Radium 21 (1960) 846-852, 10/bvr993. 10/bvr993
  56. V.G. Zubov, A.T. Ivanov, Elasticity of quartz irradiated with fast neutrons, Sov Phys-Cryst Engl Transl 12 (1967) 313-314.
  57. T.P. Ryan, Modern Engineering Statistics, John Wiley & Sons, West Sussex, 2007.