DOI QR코드

DOI QR Code

Seismic performance enhancement of small modular reactors using optimal design of inerter-based vibration absorbers

  • Shuaijun Zhang (Yantai Research Institute, Harbin Engineering University) ;
  • Xiaoyu Ji (Yantai Research Institute, Harbin Engineering University) ;
  • Gangling Hou (Yantai Research Institute, Harbin Engineering University) ;
  • Ding Xu (Yantai Research Institute, Harbin Engineering University) ;
  • Chengyu Yang (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Xuesong Cai (Yantai Research Institute, Harbin Engineering University)
  • Received : 2024.05.02
  • Accepted : 2024.06.16
  • Published : 2024.11.25

Abstract

Nuclear power plant (NPP) structures face significant challenges in ensuring structural resilience subjected to earthquake motions. The inerter-based vibration absorbers (IVAs) have been proven to control structural vibration, but they have not been applied in small modular reactor (SMR) structures. In this study, the optimal IVA parameters are investigated for SMR structures, which focus on reducing the seismic response of the first floor and fifth floor. By using a genetic algorithm (GA), the IVAs parameters are optimized to minimize the storey displacement variance and storey acceleration variance. Besides, the robustness analysis is performed to ensure the optimized parameters are practical. The various ground motions are selected for time history analysis (THA) to illustrate the seismic response of SMR equipped with the optimal IVAs. The results of THA demonstrate that the optimal IVAs enhance the seismic performance of the SMR compared with traditional SMR structures. By positioning optimal IVAs, significant mitigation of both storey displacement and storey acceleration are achieved. This study explores to a deeper understanding of IVAs' efficacy in SMR structures, which is beneficial to the practical use of IVAs in SMR structures.

Keywords

Acknowledgement

This work was supported by Guangdong Zhuhai LNG Expansion Program Phase II EPC Project Excellence Initiative Program (China National Offshore Oil Corporation) (Grant No. Z2023LGENT1210), and Heilongjiang Provincial Key Research and Development Plan funded by Heilongjiang Province, China (Department of Science and Technology) (Grant No. 2022ZX01A14).

References

  1. S.-H. Cho, K. Tanaka, J. Wu, et al., Effects of nuclear power plant shutdowns on electricity consumption and greenhouse gas emissions after the Tohoku Earthquake, Energy Econ. 55 (2016) 223-233. https://doi.org/10.1016/j.eneco.2016.01.014
  2. H.-G. Kim, J.-H. Yang, W.-J. Kim, et al., Development status of accident-tolerant fuel for light water reactors in korea, Nucl. Eng. Technol. 48 (1) (2016) 1-15. https://doi.org/10.1016/j.net.2015.11.011
  3. Z. Zheng, Y. Wang, S. Huang, et al., Investigation on damage assessment of fiber-reinforced prestressed concrete containment under temperature and subsequent internal pressure, Nucl. Eng. Technol. 55 (6) (2023) 2053-2068. https://doi.org/10.1016/j.net.2023.02.035
  4. H.-B. Surh, T.-Y. Ryu, J.-S. Park, et al., Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building, Nucl. Eng. Des. 292 (2015) 283-295. https://doi.org/10.1016/j.nucengdes.2015.06.013
  5. Y. Liu, J. Li, G. Lin, Dynamic soil-structure interaction analysis for base-isolated nuclear island building based on the method of external source wave motion, Soil Dynam. Earthq. Eng. 177 (2024) 108422.
  6. K.M. Lal, A.S. Whittaker, M.V. Sivaselvan, Mid-height seismic isolation of equipment in nuclear power plants: Numerical simulations and design recommendations, Nucl. Eng. Des. 408 (2023) 112286.
  7. I. Takewaki, S. Murakami, S. Yoshitomi, et al., Fundamental mechanism of earthquake response reduction in building structures with inertial dampers, Struct. Control Health Monit. 19 (6) (2012) 590-608. https://doi.org/10.1002/stc.457
  8. K. Ikago, K. Saito, N. Inoue, Seismic control of single-degree-of-freedom structure using tuned viscous mass damper, Earthq. Eng. Struct. Dynam. 41 (3) (2012) 453-474. https://doi.org/10.1002/eqe.1138
  9. S. Zhang, G. Hou, C. Yang, et al., Investigations on seismic performance of nuclear power plants equipped with an optimal BIS-TMDI considering FSI effects, Nucl. Eng. Technol. (2024).
  10. N. Su, Y. Xia, S. Peng, Filter-based inerter location dependence analysis approach of Tuned mass damper inerter (TMDI) and optimal design, Eng. Struct. 250 (2022) 113459.
  11. B. Fitzgerald, J. Mcauliffe, S. Baisthakur, et al., Enhancing the reliability of floating offshore wind turbine towers subjected to misaligned wind-wave loading using tuned mass damper inerters (TMDIs), Renew. Energy 211 (2023) 522-538.
  12. W. Liu, Y. Feng, Q. Zhang, et al., Dynamic model and earthquake response of a hybrid isolated system with tuned inerter dampers for nuclear power plants, Soil Dynam. Earthq. Eng. 163 (2022) 107551.
  13. I. Lazar, S. Neild, D. Wagg, Performance Analysis of Cables with Attached Tuned-Inerter-Dampers, 2015.
  14. Z. Zhang, X. Li, B. Chen, et al., Closed-form optimal design of the tuned inerter damper (TID) connecting adjacent flexible buildings, Eng. Struct. 302 (2024) 117419.
  15. S.W. Park, H. Ghasemi, J. Shen, et al., Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions 33 (13) (2004) 1249-1270. https://doi.org/10.1002/eqe.395
  16. F. Di Maio, L. Bani, E. Zio, Seismic resilience assessment of small modular reactors by a three-loop Monte Carlo simulation, Nucl. Eng. Des. 410 (2023) 112385.
  17. L. Cui, M. Fall, N. Orbovic, et al., A model for soil-structure interaction - application to small modular reactors, in: Proceedings of the CIGOS 2019, Innovation for Sustainable Infrastructure, Springer, Singapore, 2020. Singapore, F 2020.
  18. B. Zohuri, Small Modular Reactors and Innovative Efficient Enhancement Design [M]//ZOHURI B. Heat Pipe Applications in Fission Driven Nuclear Power Plants, Springer International Publishing., Cham, 2019, pp. 39-85.
  19. G. Markou, F. Genco, Seismic assessment of small modular reactors: NuScale case study for the 8.8 Mw earthquake in Chile, Nucl. Eng. Des. 342 (2019) 176-204. https://doi.org/10.1016/j.nucengdes.2018.12.002
  20. V. Nian, A. Ghori, E.M. Guerra, et al., Accelerating safe small modular reactor development in Southeast Asia, Util. Pol. 74 (2022) 101330.
  21. J.M. Egieya, M.A. Amidu, M. Hachaichi, Small modular reactors: an assessment of workforce requirements and operating costs, Prog. Nucl. Energy 159 (2023) 104632.
  22. E.M.A. Hussein, Emerging small modular nuclear power reactors: a critical review, Physics Open 5 (2020) 100038.
  23. Q. Xu, J. Chen, C. Zhang, et al., Dynamic analysis of AP1000 shield building considering fluid and structure interaction effects, Nucl. Eng. Technol. 48 (1) (2016) 246-258. https://doi.org/10.1016/j.net.2015.08.013
  24. C. Zhao, J. Chen, Q. Xu, FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading, Nucl. Eng. Des. 280 (2014) 372-388. https://doi.org/10.1016/j.nucengdes.2014.08.024
  25. Z. Zhang, C. Song, Z. Duan, et al., Experimental and Numerical studies of AP1000 shield building considering fluid-structure interaction, Science and Technology of Nuclear Installations 2022 (2022) 6458549.
  26. A. Giaralis, A.A. Taflanidis, Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria, Struct. Control Health Monit. 25 (2) (2018) e2082.
  27. A. Giaralis, F. Petrini, Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter, J. Struct. Eng. 143 (9) (2017) 04017127.
  28. I.F. Lazar, S.A. Neild, D.J. Wagg, Using an inerter-based device for structural vibration suppression, Earthq. Eng. Struct. Dynam. 43 (8) (2014) 1129-1147. https://doi.org/10.1002/eqe.2390
  29. Y. Wen, F. Gomez, D. Li, et al., Generalized optimal design of multiple tuned inerter dampers for control of MDOF structures under stochastic seismic excitation, Struct. Control Health Monit. 29 (1) (2022) e2853.
  30. A.A. Taflanidis, A. Giaralis, D. Patsialis, Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures, J. Franklin Inst. 356 (14) (2019) 7754-7784. https://doi.org/10.1016/j.jfranklin.2019.02.022
  31. S.Y. Zhang, S. Neild, J.Z. Jiang, Optimal design of a pair of vibration suppression devices for a multi-storey building, Struct. Control Health Monit. 27 (3) (2020) e2498.
  32. Iaea, Advances in Small Modular Reactor Technology Developments. International Atomic Energy Agency, International Atomic Energy Agency, 2014.
  33. T. Guner, O.S. Bursi, S. Erlicher, Optimization and performance of metafoundations for seismic isolation of small modular reactors, Comput. Aided Civ. Infrastruct. Eng. 38 (12) (2023) 1558-1582. https://doi.org/10.1111/mice.12902
  34. B. Vujanovic, Conservation laws of dynamical systems via d'alembert's principle, Int. J. Non Lin. Mech. 13 (3) (1978) 185-197. https://doi.org/10.1016/0020-7462(78)90007-0
  35. B. Shi, W. Dai, J. Yang, Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism, Nonlinear Dynam. 109 (2) (2022) 419-442. https://doi.org/10.1007/s11071-022-07564-7
  36. T. Yang, W. Dang, L. Chen, Two-dimensional inerter-enhanced nonlinear energy sink, Nonlinear Dynam. 112 (1) (2024) 379-401. https://doi.org/10.1007/s11071-023-09056-8
  37. K. Dai, D. Lu, S. Zhang, et al., Study on the damping ratios of reinforced concrete structures from seismic response records, Eng. Struct. 223 (2020) 111143.
  38. Z. Zhao, Q. Chen, R. Zhang, et al., Energy dissipation mechanism of inerter systems, Int. J. Mech. Sci. 184 (2020) 105845.
  39. Z. Wang, A. Giaralis, Enhanced motion control performance of the tuned mass damper inerter through primary structure shaping, Struct. Control Health Monit. 28 (8) (2021) e2756.
  40. D. Pietrosanti, M. De Angelis, M. Basili, A generalized 2-DOF model for optimal design of MDOF structures controlled by Tuned Mass Damper Inerter (TMDI), Int. J. Mech. Sci. 185 (2020) 105849.
  41. N.U. Islam, R.S. Jangid, Optimum parameters of tuned inerter damper for damped structures, J. Sound Vib. 537 (2022) 117218.
  42. D. De Domenico, G. Ricciardi, An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI), Earthq. Eng. Struct. Dynam. 47 (5) (2018) 1169-1192. https://doi.org/10.1002/eqe.3011
  43. D. De Domenico, G. Ricciardi, Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems, Earthq. Eng. Struct. Dynam. 47 (12) (2018) 2539-2560. https://doi.org/10.1002/eqe.3098
  44. J.H. Holland, Genetic algorithms and adaptation, in: O.G. SELFRIDGE, E. L. RISSLAND, M.A. ARBIB (Eds.), Adaptive Control of Ill-Defined Systems, Springer US, Boston, MA, 1984, pp. 317-333.
  45. F. Di Trapani, A.P. Sberna, G.C. Marano, A genetic algorithm-based framework for seismic retrofitting cost and expected annual loss optimization of non-conforming reinforced concrete frame structures, Comput. Struct. 271 (2022) 106855.
  46. J. Thompson, Genetic Algorithms and Applications [M]. Handbook of Formal Optimization, Springer Nature Singapore, Singapore, 2023, pp. 1-26.
  47. D. Patsialis, A.A. Taflanidis, A. Giaralis, Tuned-mass-damper-inerter optimal design and performance assessment for multi-storey hysteretic buildings under seismic excitation, Bull. Earthq. Eng. 21 (3) (2023) 1541-1576. https://doi.org/10.1007/s10518-021-01236-4
  48. M. Mitchell, An Introduction to Genetic Algorithms [M], The MIT Press, 1998.
  49. K. Kanai, S. Yoshizawa, T. Suzuki, An Empirical Formula for the Spectrum of Strong Earthquake Motions, II, F, 1963 [C].
  50. X. Bai, Z. Wu, Research on the parameter of response spectrum of Clough-Penzien model, in: Proceedings of the Active and Passive Smart Structures and Integrated Systems, SPIE, 2011. F, 2011 [C].
  51. R.W. Clough, J. Penzien, Dynamics of Structures [M], McGraw-Hill, 1993.
  52. M. De Angelis, M. Basili, D. Pietrosanti, On the optimal design and placement of Tuned-Mass-Damper-Inerter for Multi-Degree-Of-Freedom structures, Structures 56 (2023) 104781.
  53. J. Bian, X. Zhou, K. Ke, et al., Seismic resilient steel substation with BI-TMDI: a theoretical model for optimal design, Journal of Constructional Steel Research 192 (2022) 107233.
  54. A.E. Gkikakis, K.A. Kapasakalis, E.J. Sapountzakis, Comprehensive design optimization of vertical seismic absorbers incorporating sensitivity and robust analysis: a case study of the KDamper, Eng. Struct. 301 (2024) 117303.
  55. Seismosoft, SeismoArtif-A Computer Program for Generating Artificial Earthquake Accelerograms Matched to a Specific Target Response Spectrum, 2018.
  56. Y. Chen, C. Xiong, T. Ma, et al., Research on floor response spectrum of shielded building structure under seismic loading, IOP Conf. Ser. Earth Environ. Sci. 446 (2) (2020) 022001. https://doi.org/10.1088/1755-1315/446/2/022001