과제정보
This research was funded by the National Natural Science Foundation of China, grant numbers 12205237 and 12275219.
참고문헌
- B.G. Carlson, Solution of the Transport Equation by Sn ApproximationsLA-1599, Los Alamos Scientific Laboratory, 1953.
- Brody Bassett, Brian Kiedrowski, Meshless local Petrov-Galerkin solution of the neutron transport equation with streamline-upwind Petrov-Galerkin stabilization, J. Comput. Phys. 377 (2019) 1-73. https://doi.org/10.1016/j.jcp.2018.10.028
- G. Zhang, H.T.A.R.S. Zhang, A parallel tetrahedral discontinuous finite element code for the solution of the discrete ordinates neutron transport equation, Ann. Nucl. Energy 196 (2024) 110242.
- J.A. Welch, J. Ko ' pha ' zi, A.R. Owens, et al., A geometry preserving, conservative, mesh-to-mesh isogeometric interpolation algorithm for spatial adaptivity of the multigroup, second-order even-parity form of the neutron transport equation, J. Comput. Phys. 347 (2017) 129-146. https://doi.org/10.1016/j.jcp.2017.06.015
- J.E. Morel, J.M. McGhee, A self-adjoint angular flux equation, Nucl. Sci. Eng. 132 (1999) 312-325. https://doi.org/10.13182/NSE132-312
- G.C. Pomraning, M. Clark Jr., The variational method applied to the monoenergetic Boltzmann equation. Part II, Nucl. Sci. Eng. 16 (1963) 155.
- R.T. Ackroyd, Least-squares derivation of extremum and weighted-residual methods for equations of reactor physics, Ann. Nucl. Energy 10 (1983) 65.
- Jennifer Liscum-Powell, Finite Element Numerical Solution of a Self-Adjoint Transport Equation for Coupled Electron-Photon problems[D], The University of New Mexico, United States, 2000.
- L. Cao, H. Wu, Y. Zhou, Simplified spherical harmonics method for self-adjoint angular flux transport equation in unstructured geometry, Nucl. Power Eng. 27 (3) (2006) 6-10.
- Q. Ye, H. Wu, Spherical harmonics method for neutron transport equation in two-dimensional cylindrical (R-Z) geometry, Nucl. Power Eng. 29 (4) (2008) 19-23.
- Schunert Sebastian, Yaqi Wang, Martineau, et al., A new mathematical adjoint for the modified SAAF-SN equations, Ann. Nucl. Energy 75 (2015) 340-352. https://doi.org/10.1016/j.anucene.2014.08.028
- Y. Wang, M.D. DeHart, D.R. Gaston, et al., Convergence study of Rattlesnake solutions for the two-dimensional C5G7 MOX benchmark[C], in: ANS MC2015 - International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, 2015.
- Y. Wang, S. Schunert, V. Laboure, Rattlesnake Theory Manual [R]. Idaho Falls, Idaho National Laboratory, 2018.
- C. Latimer, J. Kophazi, M.D. Eaton, et al., A geometry conforming isogeometric method for the self-adjoint angular flux (SAAF) form of the neutron transport equation with a discrete ordinate (SN) angular discretization, Ann. Nucl. Energy 136 (2020) 1-16.
- A. Sood, R.A. Forster, D. Kent Parsons, Analytical benchmark test set for criticality code verification, Prog. Nucl. Energy 42 (1) (2003) 55-106. https://doi.org/10.1016/S0149-1970(02)00098-7
- J.G. Issa, N.S. Riyait, A.J.H. Goddard, et al., Multigroup application of the anisotropic fem code feltran to 1, 2, 3-Dimensions and R-Z Problems, Prog. Nucl. Energy 18 (1-2) (1986) 251-264. https://doi.org/10.1016/0149-1970(86)90031-4
- Z. Zheng, H. Wu, L. Cao, Y. Li, Q. Chen, Coupled PN-DPN method for solving the neutron transport equation of planar geometry, Nucl. Power Eng. 31 (S2) (2010) 29-33.
- Y. Hirao, Y. Matsumoto, Development of a connection-method calculation utility for the DORT-TORT code, Radiat. Protect. Dosim. 116 (1-4) (2005) 19-23. https://doi.org/10.1093/rpd/nci232
- J. Stepanek, T. Auerbach, W. Haelg, Calculation of four thermal reactor benchmark problems in X-Y geometry, EPRI NP-2855 14 (23) (1983). https://inis.iaea.org/search/search.aspx?orig_q=RN:14802758.
- L. Deng, Z. Xie, S. Li, Multigroup Monte Carlo calculation coupled of transport and burnup, Chin. J. Comput. Phys. 20 (1) (2003) 65-70.
- H. Wu, P. Liu, Y. Zhou, L. Cao, Transmission probability method based on triangle meshes for solving unstructured geometry neutron transport problem, Nucl. Eng. Des. 237 (1) (2007) 28-37. https://doi.org/10.1016/j.nucengdes.2006.04.031
- L. Deng, Z. Xie, J. Zhang, MCMG: a 3-D multigroup P3 Monte Carlo code and its benchmarks, J. Nucl. Sci. Technol. 37 (7) (2000) 608-614. https://doi.org/10.1080/18811248.2000.9714937
- S.G. Hong, N.Z. Cho, CRX: a code for rectangular and hexagonal lattices based on the method of characteristics, Ann. Nucl. Energy 25 (8) (1998) 547-565. https://doi.org/10.1016/S0306-4549(97)00113-8
- Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit Forget, Kord Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97. https://doi.org/10.1016/j.anucene.2014.07.048
- G. Marleau, A. Hebert, R. Roy, A User Guide for DRAGON 3.06, Report IGE-174 Rev. 7, Institut de genie nucleaire, Ecole Polytechnique de Montreal, Montreal, Quebec, 2008.
- X. Yang, N. Satvat, MOCUM: a two-dimensional method of characteristics code based on constructive solid geometry and unstructured meshing for general geometries, Ann. Nucl. Energy 46 (2012) 20-28. https://doi.org/10.1016/j.anucene.2012.03.009
- T. Mazumdar, S.B. Degweker, Solution of neutron transport equation by Method of Characteristics, Ann. Nucl. Energy 77 (2015) 522-535. https://doi.org/10.1016/j.anucene.2014.12.029
- Toshikazu Takeda, Hideaki Ikeda, 3-D neutron transport benchmarks, J. Nucl. Sci. Technol. 28 (7) (1991) 656-669. https://doi.org/10.1080/18811248.1991.9731408
- Arogonne Code Center, Benchmark Problem Book, Argonne National Laboratory, December, 1985. ANL-7416, Supplement No. 3.
- Y. Wang, S. Schunert, B.A. Baker, Rattlesnake: User Manual, Idaho National Laboratory, 2015. Technical Report INL/EXT-15-37337.
- V. Boyarinov, P. Fomichenko, J. Hou, K. Ivanov, A. Aures, W. Zwermann, K. Velkov, Deterministic Time-dependent Neutron Transport Benchmark without Spatial Homogenization (C5G7-TD), Nuclear Energy Agency Organisation for Economic Co-operation and Development (NEA-OECD, 2016.
- Q. Shen, Y. Wang, D. Jabaay, B. Kochunas, T. Downar, Transient analysis of C5G7-TD benchmark with MPACT, Ann. Nucl. Energy 125 (2019) 107-120. https://doi.org/10.1016/j.anucene.2018.10.049
- M.D. DeHart, Z. Mausolff, Z. Weems, S. Popp, K. Smith, F. Shriver, S. Goluoglu, Z. Prince, J. Ragusa, Preliminary Results for the OECD/NEA Time Dependent Benchmark Using Rattlesnake, Rattlesnake-IQS and TDKENO, Technical Report INL/EXT-16-39723, Idaho National Laboratory, 2016, 2016.