DOI QR코드

DOI QR Code

Numerical solution of static and spatial kinetics self-adjoint angular flux neutron transport equation

  • Duoyu Jiang (Xi'an Research Institute of Hi-Tech) ;
  • Peng Xu (Xi'an Research Institute of Hi-Tech) ;
  • Tianliang Hu (Northwest Institute of Nuclear Technology) ;
  • Xinbiao Jiang (Northwest Institute of Nuclear Technology) ;
  • Lipeng Wang (Northwest Institute of Nuclear Technology) ;
  • Lu Cao (Northwest Institute of Nuclear Technology) ;
  • Da Li (Northwest Institute of Nuclear Technology) ;
  • Lixin Chen (Northwest Institute of Nuclear Technology)
  • 투고 : 2024.03.17
  • 심사 : 2024.06.12
  • 발행 : 2024.11.25

초록

This paper elucidates a comprehensive derivation of the variational formulation pertaining to the static and spatial kinetics self-adjoint angular flux (SAAF) neutron transport equation. The methodology employed for discretization of the spatial variable is the finite element method, while the energy group discretization is executed via the group method, and the directional discretization is conducted using the discrete ordinates method. Analytic expressions for the discretization to variable separation under both vacuum and reflective boundary conditions are furnished. Constructed upon the MOOSE framework, a code designated as SAAFCGSN has been developed for the resolution of the SAAF neutron transport equation. The zero-order scattering matrix within this computational framework is managed through an innovative "decoupling" method, thereby enhancing the computational efficiency significantly. The functionality and robustness of the SAAFCGSN code are corroborated through meticulous evaluation involving seven distinct steady-state scenarios as well as two transient states. Empirical outcomes verify the compatibility of the SAAFCGSN code with both structured and unstructured mesh, inclusive of their amalgamations, thus facilitating maintenance and ensuring elevated computational accuracy. In addition, a performance analysis benchmarked against IAEA standards reveals that the adoption of the scattering matrix "decoupling" method propels a computational speed increase exceeding 30 %, signifying a notable advancement in calculation efficiency.

키워드

과제정보

This research was funded by the National Natural Science Foundation of China, grant numbers 12205237 and 12275219.

참고문헌

  1. B.G. Carlson, Solution of the Transport Equation by Sn ApproximationsLA-1599, Los Alamos Scientific Laboratory, 1953. 
  2. Brody Bassett, Brian Kiedrowski, Meshless local Petrov-Galerkin solution of the neutron transport equation with streamline-upwind Petrov-Galerkin stabilization, J. Comput. Phys. 377 (2019) 1-73.  https://doi.org/10.1016/j.jcp.2018.10.028
  3. G. Zhang, H.T.A.R.S. Zhang, A parallel tetrahedral discontinuous finite element code for the solution of the discrete ordinates neutron transport equation, Ann. Nucl. Energy 196 (2024) 110242. 
  4. J.A. Welch, J. Ko ' pha ' zi, A.R. Owens, et al., A geometry preserving, conservative, mesh-to-mesh isogeometric interpolation algorithm for spatial adaptivity of the multigroup, second-order even-parity form of the neutron transport equation, J. Comput. Phys. 347 (2017) 129-146.  https://doi.org/10.1016/j.jcp.2017.06.015
  5. J.E. Morel, J.M. McGhee, A self-adjoint angular flux equation, Nucl. Sci. Eng. 132 (1999) 312-325.  https://doi.org/10.13182/NSE132-312
  6. G.C. Pomraning, M. Clark Jr., The variational method applied to the monoenergetic Boltzmann equation. Part II, Nucl. Sci. Eng. 16 (1963) 155. 
  7. R.T. Ackroyd, Least-squares derivation of extremum and weighted-residual methods for equations of reactor physics, Ann. Nucl. Energy 10 (1983) 65. 
  8. Jennifer Liscum-Powell, Finite Element Numerical Solution of a Self-Adjoint Transport Equation for Coupled Electron-Photon problems[D], The University of New Mexico, United States, 2000. 
  9. L. Cao, H. Wu, Y. Zhou, Simplified spherical harmonics method for self-adjoint angular flux transport equation in unstructured geometry, Nucl. Power Eng. 27 (3) (2006) 6-10. 
  10. Q. Ye, H. Wu, Spherical harmonics method for neutron transport equation in two-dimensional cylindrical (R-Z) geometry, Nucl. Power Eng. 29 (4) (2008) 19-23. 
  11. Schunert Sebastian, Yaqi Wang, Martineau, et al., A new mathematical adjoint for the modified SAAF-SN equations, Ann. Nucl. Energy 75 (2015) 340-352.  https://doi.org/10.1016/j.anucene.2014.08.028
  12. Y. Wang, M.D. DeHart, D.R. Gaston, et al., Convergence study of Rattlesnake solutions for the two-dimensional C5G7 MOX benchmark[C], in: ANS MC2015 - International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, 2015. 
  13. Y. Wang, S. Schunert, V. Laboure, Rattlesnake Theory Manual [R]. Idaho Falls, Idaho National Laboratory, 2018. 
  14. C. Latimer, J. Kophazi, M.D. Eaton, et al., A geometry conforming isogeometric method for the self-adjoint angular flux (SAAF) form of the neutron transport equation with a discrete ordinate (SN) angular discretization, Ann. Nucl. Energy 136 (2020) 1-16. 
  15. A. Sood, R.A. Forster, D. Kent Parsons, Analytical benchmark test set for criticality code verification, Prog. Nucl. Energy 42 (1) (2003) 55-106.  https://doi.org/10.1016/S0149-1970(02)00098-7
  16. J.G. Issa, N.S. Riyait, A.J.H. Goddard, et al., Multigroup application of the anisotropic fem code feltran to 1, 2, 3-Dimensions and R-Z Problems, Prog. Nucl. Energy 18 (1-2) (1986) 251-264.  https://doi.org/10.1016/0149-1970(86)90031-4
  17. Z. Zheng, H. Wu, L. Cao, Y. Li, Q. Chen, Coupled PN-DPN method for solving the neutron transport equation of planar geometry, Nucl. Power Eng. 31 (S2) (2010) 29-33. 
  18. Y. Hirao, Y. Matsumoto, Development of a connection-method calculation utility for the DORT-TORT code, Radiat. Protect. Dosim. 116 (1-4) (2005) 19-23.  https://doi.org/10.1093/rpd/nci232
  19. J. Stepanek, T. Auerbach, W. Haelg, Calculation of four thermal reactor benchmark problems in X-Y geometry, EPRI NP-2855 14 (23) (1983). https://inis.iaea.org/search/search.aspx?orig_q=RN:14802758. 
  20. L. Deng, Z. Xie, S. Li, Multigroup Monte Carlo calculation coupled of transport and burnup, Chin. J. Comput. Phys. 20 (1) (2003) 65-70. 
  21. H. Wu, P. Liu, Y. Zhou, L. Cao, Transmission probability method based on triangle meshes for solving unstructured geometry neutron transport problem, Nucl. Eng. Des. 237 (1) (2007) 28-37.  https://doi.org/10.1016/j.nucengdes.2006.04.031
  22. L. Deng, Z. Xie, J. Zhang, MCMG: a 3-D multigroup P3 Monte Carlo code and its benchmarks, J. Nucl. Sci. Technol. 37 (7) (2000) 608-614.  https://doi.org/10.1080/18811248.2000.9714937
  23. S.G. Hong, N.Z. Cho, CRX: a code for rectangular and hexagonal lattices based on the method of characteristics, Ann. Nucl. Energy 25 (8) (1998) 547-565.  https://doi.org/10.1016/S0306-4549(97)00113-8
  24. Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit Forget, Kord Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97.  https://doi.org/10.1016/j.anucene.2014.07.048
  25. G. Marleau, A. Hebert, R. Roy, A User Guide for DRAGON 3.06, Report IGE-174 Rev. 7, Institut de genie nucleaire, Ecole Polytechnique de Montreal, Montreal, Quebec, 2008. 
  26. X. Yang, N. Satvat, MOCUM: a two-dimensional method of characteristics code based on constructive solid geometry and unstructured meshing for general geometries, Ann. Nucl. Energy 46 (2012) 20-28.  https://doi.org/10.1016/j.anucene.2012.03.009
  27. T. Mazumdar, S.B. Degweker, Solution of neutron transport equation by Method of Characteristics, Ann. Nucl. Energy 77 (2015) 522-535.  https://doi.org/10.1016/j.anucene.2014.12.029
  28. Toshikazu Takeda, Hideaki Ikeda, 3-D neutron transport benchmarks, J. Nucl. Sci. Technol. 28 (7) (1991) 656-669.  https://doi.org/10.1080/18811248.1991.9731408
  29. Arogonne Code Center, Benchmark Problem Book, Argonne National Laboratory, December, 1985. ANL-7416, Supplement No. 3. 
  30. Y. Wang, S. Schunert, B.A. Baker, Rattlesnake: User Manual, Idaho National Laboratory, 2015. Technical Report INL/EXT-15-37337. 
  31. V. Boyarinov, P. Fomichenko, J. Hou, K. Ivanov, A. Aures, W. Zwermann, K. Velkov, Deterministic Time-dependent Neutron Transport Benchmark without Spatial Homogenization (C5G7-TD), Nuclear Energy Agency Organisation for Economic Co-operation and Development (NEA-OECD, 2016. 
  32. Q. Shen, Y. Wang, D. Jabaay, B. Kochunas, T. Downar, Transient analysis of C5G7-TD benchmark with MPACT, Ann. Nucl. Energy 125 (2019) 107-120.  https://doi.org/10.1016/j.anucene.2018.10.049
  33. M.D. DeHart, Z. Mausolff, Z. Weems, S. Popp, K. Smith, F. Shriver, S. Goluoglu, Z. Prince, J. Ragusa, Preliminary Results for the OECD/NEA Time Dependent Benchmark Using Rattlesnake, Rattlesnake-IQS and TDKENO, Technical Report INL/EXT-16-39723, Idaho National Laboratory, 2016, 2016.