DOI QR코드

DOI QR Code

Feasibility study of CdMnTeSe based diagnostic X-ray detector

  • Ayun Jeong (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Jiwon Seo (Department of Health and Safety Science, Korea University) ;
  • Gi-Hyeok Shin (Department of Radiology, Dong-A University Medical Center) ;
  • Jangwon Byun (Department of Materials Science and Engineering, Korea University) ;
  • Taejoon Mo (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Ahreum Park (Department of Chemistry, Konkuk University) ;
  • Jeongmin Seo (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Jeongho Kim (Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Beomjun Park (Interdisciplinary Program in Precision Public Health, Korea University)
  • Received : 2024.04.28
  • Accepted : 2024.06.22
  • Published : 2024.11.25

Abstract

Despite their initial commercialization, CdTe-based materials are continuously being developed. However, an approach for obtaining the X-ray response with a current-mode CdMnTeSe (CMTS) detector remains to be explored. This study investigated the feasibility of using CMTS as a potential material in diagnostic X-ray detectors. The CMTS crystals were grown using the Bridgman method and treated with a radiation detector. The X-ray response of the CMTS detector was evaluated under various conditions, including tube voltage, tube current, and bias voltage. In addition, the mass attenuation coefficients of CdTe-based materials, including CMTS, were investigated. Our results demonstrated that CMTS exhibited promising properties for diagnostic X-ray detection, with stable and linear responses across various tube voltages and currents. In addition, the calculated sensitivity of the CMTS detector increased at higher bias voltages, demonstrating its practical applicability. However, problems such as signal loss were observed at higher dose rates, suggesting the need for further optimization of the CMTS growth techniques. Overall, this study indicated the requirement for further improvement in the CMTS crystal properties; however, the potential of CMTS as a candidate material for the next generation of diagnostic X-ray detectors was evident.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology and Planning(KETEP) grant funded by the Korean government (MOTIE) (20214000000070, Promoting of Experts for Energy Industry Advancement in the Field of Radiation Technology) and (20222B10100060, Development of On-site Burn-up Detection System for the Spent Fuel). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MIST) (No. 2022R1F1A1059554).

References

  1. S.D. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors 9 (2009) 3491-3526, https://doi.org/10.3390/s90503491. 
  2. L. Lu, M. Sun, Q. Lu, T. Wu, B. Huang, High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy, Nano Energy 79 (2021) 105437, https://doi.org/10.1016/j.nanoen.2020.105437. 
  3. C. Shu, L. Lei, S. Tie, X. Lu, S. Dong, Z. Fan, N. Yang, R. Yuan, J. Zhu, X. Zheng, Strain-released Cs5Cu3Cl6I2 scintillators by Rb+ doping for high-resolution X-ray imaging, J. Phys. Chem. C 128 (2024) 6106-6113, https://doi.org/10.1021/acs.jpcc.4c00140. 
  4. Y. Li, Y. Lei, H. Wang, Z. Jin, Two-dimensional metal halides for x-ray detection applications, Nano-Micro Lett. 15 (2023) 128, https://doi.org/10.1007/s40820-023-01118-1. 
  5. B.K. Cha, S. Jeon, M. Lee, H. Lee, H. Cho, C.-W. Seo, Design and performance evaluation of different high-resolution scintillators in digital X-ray imaging detector, Nucl. Instrum. Methods Phys. Res., Sect. A 1063 (2024) 169323, https://doi.org/10.1016/j.nima.2024.169323. 
  6. A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo, V.G. Sree, Y. Park, H. Kim, H. Im, R. A. Taylor, Perovskite: scintillators, direct detectors, and X-ray imagers, Mater. Today 55 (2022) 110-136, https://doi.org/10.1016/j.mattod.2022.04.009. 
  7. C.V. Prasad, M. Labed, M.T.A.S. Shaikh, J.Y. Min, T.H.V. Nguyen, W. Song, K. J. Kim, Y.S. Rim, Ga2O3-based X-ray detector and scintillators: a review, Mater. Today Phys. (2023) 101095. 
  8. H. Wei, J. Huang, Halide lead perovskites for ionizing radiation detection, Nat. Commun. 10 (2019) 1066, https://doi.org/10.1038/s41467-019-08981-w. 
  9. Y. He, M. Petryk, Z. Liu, D.G. Chica, I. Hadar, C. Leak, W. Ke, I. Spanopoulos, W. Lin, D.Y. Chung, B.W. Wessels, Z. He, M.G. Kanatzidis, CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays, Nat. Photonics 15 (2021) 36-42, https://doi.org/10.1038/s41566-020-00727-1. 
  10. P. Vijayakumar, E.P. Amaladass, K. Ganesan, R.M. Sarguna, V. Roy, S. Ganesamoorthy, Development of travelling heater method for growth of detector grade CdZnTe single crystals, Mater. Sci. Semicond. Process. 169 (2024), https://doi.org/10.1016/j.mssp.2023.107897. 
  11. J. Byun, Y. Kim, J. Seo, E. Kim, K. Kim, A. Jo, W. Lee, B. Park, Development and evaluation of photon-counting Cd0.875Zn0.125Te0.98Se0.02 detector for measuring bone mineral density physical and engineering sciences in, Medicine 46 (1) (2023) 245-253, https://doi.org/10.1007/s13246-022-01213-4. 
  12. A. Owens, M. Bavdaz, G. Brammertz, V. Gostilo, H. Graafsma, A. Kozorezov, M. Krumrey, I. Lisjutin, A. Peacock, A. Puig, H. Sipila, S. Zatoloka, The X-ray response of TlBr, Nucl. Instrum. Methods Phys. Res., Sect. A 497 (2003) 370-380, https://doi.org/10.1016/S0168-9002(02)01805-3. 
  13. M.-J. Han, S.W. Yang, J.H. Jung, D.H. Lee, J.Y. Kim, S.J. Cho, K.H. Kim, C.W. Mun, H.L. Cho, S.K. Park, Development and evaluation of a thallium (I) bromide dosimeter for intracavitary radiotherapy quality assurance, J. Instrum. 17 (2) (2022) P02010, https://doi.org/10.1088/1748-0221/17/02/P02010. 
  14. N. Menaa, P. D'Agostino, B. Zakrzewski, V.T. Jordanov, Evaluation of real-time digital pulse shapers with various HPGe and silicon radiation detectors, Nucl. Instrum. Methods Phys. Res., Sect. A 652 (2011) 512-515, https://doi.org/10.1016/j.nima.2010.08.095. 
  15. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010. 
  16. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B.R. Ecker, Y. Gao, M.A. Loi, L. Cao, J. Huang, Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals, Nat. Photonics 10 (2016) 333-339, https://doi.org/10.1038/nphoton.2016.41. 
  17. B. Park, J. Ko, J. Byun, S. Pandey, B. Park, J. Kim, M.-J. Lee, Self-powered X-ray detector based on solution-grown Cs0.05FA0.9MA0.05PbI3 single crystal, J. Alloys Compd. 981 (2024) 173717, https://doi.org/10.1016/j.jallcom.2024.173717. 
  18. R. Zhuang, X. Wang, W. Ma, Y. Wu, X. Chen, L. Tang, H. Zhu, J. Liu, L. Wu, W. Zhou, X. Liu, Y. Yang, Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response, Nat. Photonics 13 (2019) 602-608, https://doi.org/10.1038/s41566-019-0466-7. 
  19. Y. Liu, Y. Zhang, X. Zhu, J. Feng, I. Spanopoulos, W. Ke, Y. He, X. Ren, Z. Yang, F. Xiao, K. Zhao, M. Kanatzidis, S.F. Liu, Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging, Adv. Mater. 33 (2021) e2006010, https://doi.org/10.1002/adma.202006010. 
  20. L. Li, X. Liu, H. Zhang, B. Zhang, W. Jie, P.J. Sellin, C. Hu, G. Zeng, Y. Xu, Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density, ACS Appl. Mater. Interfaces 11 (2019) 7522-7528, https://doi.org/10.1021/acsami.8b18598. 
  21. H. Kim, Y. Ogorodnik, A. Kargar, L. Cirignano, C.L. Thrall, W. Koehler, S.P. O'Neal, Z. He, E. Swanberg, S.A. Payne, M.R. Squillante, K. Shah, Thallium bromide gamma-ray spectrometers and pixel arrays, Front. Physiol. 8 (2020) 55, https://doi.org/10.3389/fphy.2020.00055. 
  22. G. Arino-Estrada, H. Kim, J. Du, L.J. Cirignano, K.S. Shah, S.R. Cherry, Energy and electron drift time measurements in a pixel CCI TlBr detector with 1.3 MeV prompt-gammas, Phys. Med. Biol. 66 (2021) 044001, https://doi.org/10.1088/1361-6560/abd419. 
  23. B. Park, Y. Kim, J. Seo, J. Byun, V. Dedic, J. Franc, A.E. Bolotnikov, R.B. James, K. Kim, Bandgap engineering of Cd1-xZnxTe1-ySey (0 Nucl. Instrum. Methods Phys. Res., Sect. A 1036 (2022) 166836, https://doi.org/10.1016/j.nima.2022.166836. 
  24. J. Pipek, M. Betusiak, E. Belas, R. Grill, P. Praus, A. Musiienko, J. Pekarek, U. N. Roy, R.B. James, N. Utpal, Roy, et al., Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects, Sci. Rep. 9 (1) (2019) 054058, https://doi.org/10.1103/PhysRevApplied.15.054058. 
  25. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, G. Yang, R.B. James, Charge-transport properties of as-grown Cd1-xZnxTe1-ySey by the traveling heater method, AIP Adv. 8 (2018) 125015, https://doi.org/10.1063/1.5064373. 
  26. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications, Sci. Rep. 9 (2019) 1620, https://doi.org/10.1038/s41598-018-38188-w. 
  27. S. Hwang, H. Yu, A.E. Bolotnikov, R.B. James, K. Kim, Anomalous Te inclusion size and distribution in CdZnTeSe, IEEE Trans. Nucl. Sci. 66 (2019) 2329-2332, https://doi.org/10.1109/TNS.2019.2944969. 
  28. K. Kim, A.E. Bolotnikov, G.S. Camarda, A. Hossain, R.B. James, Overcoming Zn segregation in CdZnTe with the temperature gradient annealing, J. Cryst. Growth 442 (2016) 98-101, https://doi.org/10.1016/j.jcrysgro.2016.02.038. 
  29. J. Zhang, W. Jie, T. Wang, D. Zeng, Y. Hao, K. He, Vertical Bridgman growth and characterization of CdMnTe substrates for HgCdTe epitaxy, J. Cryst. Growth 310 (2008) 3203-3207, https://doi.org/10.1016/j.jcrysgro.2008.03.024. 
  30. O.S. Babalola, A.E. Bolotnikov, M. Groza, A. Hossain, S. Egarievwe, R.B. James, A. Burger, Study of Te inclusions in CdMnTe crystals for nuclear detector applications, J. Cryst. Growth 311 (2009) 3702-3707, https://doi.org/10.1016/j.jcrysgro.2009.04.037. 
  31. P. Yu, B. Jiang, Z. Han, S. Zhao, P. Gao, T. Shao, W. Liu, X. Gu, Y. Wang, Characterization of physical and optical properties of a new radiation detection material CdMgTe, Opt. Mater. 131 (2022) 112656, https://doi.org/10.1016/j.optmat.2022.112656. 
  32. A. Hossain, V. Yakimovich, A.E. Bolotnikov, K. Bolton, G.S. Camarda, Y. Cui, J. Franc, R. Gul, K.H. Kim, H. Pittman, G. Yang, R. Herpst, R.B. James, Development of Cadmium Magnesium Telluride (Cd1-xMgxTe) for room temperature X-and gamma-ray detectors, J. Cryst. Growth 379 (2013) 34-40, https://doi.org/10.1016/j.jcrysgro.2012.11.044. 
  33. J. Byun, J. Seo, J. Seo, B. Park, Growth and characterization of detector-grade CdMnTeSe, Nucl. Eng. Technol. 54 (2022) 4215-4219, https://doi.org/10.1016/j.net.2022.06.007. 
  34. Y. Kim, J. Ko, J. Byun, J. Seo, B. Park, Passivation effect on Cd0.95Mn0.05Te0.98Se0.02 radiation detection performance, Appl. Radiat. Isot. 200 (2023) 110914, https://doi.org/10.1016/j.apradiso.2023.110914. 
  35. J. Byun, T. Mo, H. Yuk, G. Heo, J. Seo, H. Kim, B. Park, Vertical homogeneity study of Bridgman-grown Cd0.95Mn0.05Te0.98Se0.02 for radiation detection, Mater. Lett. 359 (2024) 135970, https://doi.org/10.1016/j.matlet.2024.135970. 
  36. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. 
  37. B. Park, J. Ko, J. Byun, B. Park, M.-J. Lee, J. Kim, Feasibility study of CdZnTe and CdZnTeSe based high energy X-ray detector using linear accelerator, Nucl. Eng. Technol. 55 (2023) 2797-2801, https://doi.org/10.1016/j.net.2023.05.003. 
  38. L. Pan, S. Shrestha, N. Taylor, W. Nie, L.R. Cao, Determination of X-ray detection limit and applications in perovskite X-ray detectors, Nat. Commun. 12 (2021) 5258, https://doi.org/10.1038/s41467-021-25648-7. 
  39. F. Verhaegen, A.E. Nahum, S. Van de Putte, Y. Namito, Monte Carlo modelling of radiotherapy kV x-ray units, Phys. Med. Biol. 44 (1999) 1767-1789, https://doi.org/10.1088/0031-9155/44/7/315. 
  40. B. Park, J. Ko, J. Byun, S. Pandey, B. Park, J. Kim, M.-J. Lee, Solution-grown MAPbBr3 single crystals for self-powered detection of X-rays with high energies above one megaelectron volt, Nanomaterials 13 (2023) 2157, https://doi.org/10.3390/nano13152157. 
  41. M. Chu, S. Terterian, D. Ting, C.C. Wang, H.K. Gurgenian, S. Mesropian, Tellurium antisites in CdZnTe, Appl. Phys. Lett. 79 (17) (2001) 2728-2730, https://doi.org/10.1063/1.1412588. 
  42. A. Cavallini, B. Fraboni, W. Dusi, Compensation processes in CdTe-based compounds, IEEE Trans. Nucl. Sci. 52 (5) (2005) 1964-1967, https://doi.org/10.1109/TNS.2005.856770. 
  43. R. Nan, T. Wang, G. Xu, M. Zhu, W. Jie, Compensation processes in high-resistivity CdZnTe crystals doped with In/Al, J. Cryst. Growth 451 (2016) 150-154, https://doi.org/10.1016/j.jcrysgro.2016.07.032. 
  44. R. Grill, J. Franc, P. Hoschl, I. Turkevych, E. Belas, P. Moravec, Semi-insulating Tesaturated CdTe, IEEE Trans. Nucl. Sci. 52 (5) (2005) 1925-1931, https://doi.org/10.1109/TNS.2005.856801.