Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korea Government (MSIT) (No. RS-2022-00144409).
References
- J. Park, L.-H. Kim, S.-W. Nam, I. Yeo, Performance evaluation of airtightness in concrete tube structures for super-speed train systems, Mag. Concr. Res. 65 (9) (2013) 535-545. https://doi.org/10.1680/macr.12.00161
- P. Devkota, H.W. Jang, J.-W. Hong, J. Park, Finite element analysis-based damage metric for airtightness performance evaluation of concrete tube structures, KSCE J. Civ. Eng. 25 (4) (2021) 1385-1398. https://doi.org/10.1007/s12205-021-1007-8
- R. Dameron, R. Dunham, Y. Rashid, H. Tang, Conclusions of the EPRI concrete containment research program, Nucl. Eng. Des. 125 (1) (1991) 41-55. https://doi.org/10.1016/0029-5493(91)90005-3
- W.J.S.P. Buss, Proof of Leakage Rate of a Concrete Reactor Building, Concrete for Nuclear Reactors ACI Special Publication SP-34, III, 1972, pp. 1291-1320.
- S.H. Rizkalla, B.L. Lau, S.H. Simmonds, Air leakage characteristics in reinforced concrete, J. Struct. Eng. 110 (5) (1984) 1149-1162. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(1149)
- T. Suzuki, K. Takiguchi, H. Hotta, Leakage of gas through concrete cracks, Nucl. Eng. Des. 133 (1) (1992) 121-130. https://doi.org/10.1016/0029-5493(92)90096-E
- T.C. Hutchinson, T.E. Soppe, Experimentally measured permeability of uncracked and cracked concrete components, J. Mater. Civ. Eng. 24 (5) (2012) 548-559. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000406
- T. Nagano, A. Kowda, T. Matumura, Y. Inada, K. Yajima, Experimental study of leakage through residual shear cracks on r/c walls, Proceedings of SMiRT-10 Q (1989) 139-144.
- T. Suzuki, K. Takiguchi, Y. Ide, M. Uchiyama, Fundamental experiments on the leakage of gas through cracked concrete walls. Transactions of AIJ, Journal of structural and construction engineering 373 (1987) 27-33 (in Japanese). https://doi.org/10.3130/aijsx.373.0_27
- N.W. Hanson, D.M. Schultz, J.J. Roller, A. Azizinamini, H. Tang, Testing of large-scale concrete containment structural elements, Nucl. Eng. Des. 100 (2) (1987) 129-149. https://doi.org/10.1016/0029-5493(87)90039-2
- U. Greiner, W. Ramm, Air leakage characteristics in cracked concrete, Nucl. Eng. Des. 156 (1-2) (1995) 167-172. https://doi.org/10.1016/0029-5493(94)00942-R
- N. Herrmann, L. Gerlach, H. Muller, D.K. Christoph Niklasch, Y. Le Pape, C. Bento, PACE-1450-Experimental investigation of the crack behaviour of prestressed concrete containment walls considering the prestressing loss due to aging, Transactions of SMiRT-20 (2009).
- Y.-S. Choun, H.-K. Park, Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement, Nucl. Eng. Technol. 47 (7) (2015) 884-894. https://doi.org/10.1016/j.net.2015.07.003
- S. Basha, R. Singh, R. Patnaik, S. Ramanujam, H. Kushwaha, V.V. Raj, Predictions of ultimate load capacity for pre-stressed concrete containment vessel model with BARC finite element code ULCA, Ann. Nucl. Energy 30 (4) (2003) 437-471. https://doi.org/10.1016/S0306-4549(02)00075-0
- I. Tavakkoli, M. Kianoush, H. Abrishami, X. Han, Finite element modelling of a nuclear containment structure subjected to high internal pressure, Int. J. Pres. Ves. Pip. 153 (2017) 59-69. https://doi.org/10.1016/j.ijpvp.2017.05.004
- N. Herrmann, H.S. Muller, C. Niklasch, S. Michel-Ponnelle, Y. LePape, C. Bento, PACE-1450-The crack and leakage behaviour of a pre-stressed concrete containment wall considering the prestressing loss due to aging, Transactions of SMiRT-22 (2013).
- N.-H. Lee, K.-B. Song, Seismic capability evaluation of the prestressed/reinforced concrete containment, Yonggwang nuclear power plant units 5 and 6, Nucl. Eng. Des. 192 (1999) 189-203. https://doi.org/10.1016/S0029-5493(99)00108-9
- G.M. Bae, Master's Thesis, In-Plane Shear Behavior of Reinforced Concrete Elements with High-Strength Materials, 129, Seoul National University, 2014.
- J.A. Bruce, E.C. Bentz, O.-S. Kwon, Experimental method to investigate airflow through cracked concrete, ACI Mater. J. 119 (6) (2022) 221-231.
- V. Picandet, A. Khelidj, H. Bellegou, Crack effects on gas and water permeability of concretes, Cement Concr. Res. 39 (6) (2009) 537-547. https://doi.org/10.1016/j.cemconres.2009.03.009
- G. Rastiello, C. Boulay, S. Dal Pont, J.-L. Tailhan, P. Rossi, Real-time water permeability evolution of a localized crack in concrete under loading, Cement Concr. Res. 56 (2014) 20-28. https://doi.org/10.1016/j.cemconres.2013.09.010
- F.M. White, Fluid Mechanics, 1990. New York.
- G. De Marsily, Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic Press, 1986.
- A.P. Oron, B. Berkowitz, Flow in rock fractures: the local cubic law assumption reexamined, Water Resour. Res. 34 (11) (1998) 2811-2825. https://doi.org/10.1029/98WR02285
- H. Sogbossi, J. Verdier, S. Multon, Impact of reinforcement-concrete interfaces and cracking on gas transfer in concrete, Construct. Build. Mater. 157 (2017) 521-533. https://doi.org/10.1016/j.conbuildmat.2017.09.095
- T. Soppe, M. Stoevhase, T. Hutchinson, Experimental Damage-Transport Correlations for Uniaxially-Loaded Reinforced Concrete Walls, University of California, San Diego, 2008. SSRP-08-07.
- T. Wang, T.C. Hutchinson, Gas leakage rate through reinforced concrete shear walls: Numerical study, Nucl. Eng. Des. 235 (21) (2005) 2246-2260. https://doi.org/10.1016/j.nucengdes.2005.04.006
- T.E. Soppe, T.C. Hutchinson, Assessment of gas leakage rates through damaged reinforced-concrete walls, J. Mater. Civ. Eng. 24 (5) (2012) 560-567. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000409
- P. Riva, L. Brusa, P. Contri, L. Imperato, Prediction of air and steam leak rate through cracked reinforced concrete panels, Nucl. Eng. Des. 192 (1) (1999) 13-30. https://doi.org/10.1016/S0029-5493(99)00080-1
- T. Suzuki, K. Takiguchi, H. Hotta, N. Kojima, M. Fukuhara, K. Kimura, Experimental study on the leakage of gas through cracked concrete walls, Proceedings of SMiRT-10 Q (1989) 145-150.
- L. Bahr, J. Sievers, First structure mechanical simulations of the vercors prestressed concrete containment mock-up, Transactions of SMiRT-24 (2017).
- A. Borosnyoi, I. Snobli, Crack width variation within the concrete cover of reinforced concrete members, Epitoanyag 62 (3) (2010) 70-74. https://doi.org/10.14382/epitoanyag-jsbcm.2010.14
- A. P'erez Caldentey, H. Corres Peiretti, J. Peset Iribarren, A. Giraldo Soto, Cracking of RC members revisited: influence of cover, φ/ρs, ef and stirrup spacing-an experimental and theoretical study, Struct. Concr. 14 (1) (2013) 69-78. https://doi.org/10.1002/suco.201200016
- S. Mishra, I. Thangamani, R.K. Singh, Containment leakage characterization with BARCOM test results for design and over pressure conditions, Nucl. Eng. Des. 301 (2016) 245-254. https://doi.org/10.1016/j.nucengdes.2016.03.004
- L.R. Bishnoi, R.P. Vedula, S.K. Gupta, Effect of reinforcing steel on pressurized air leakage through cracks in concrete, Transactions of SMiRT 21 (2011). Div-III.
- N. Herrmann, H.S. Muller, S. Michel-Ponnelle, M. Bottoni, B. Masson, M. Herve, The Pace-1450 experiment - investigations regarding crack and leakage behaviour of a pre-stressed concrete containment, Transactions of SMiRT 24 (2017). Div-I.
- L. Mengel, H. Krauss, D. Lowke, Water transport through cracks in plain and reinforced concrete - influencing factors and open questions, Construct. Build. Mater. 254 (2020) 118990.