DOI QR코드

DOI QR Code

Experimental study of air leakage of reinforced concrete panel with cracks

  • Yousang Lee (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Hong-Gun Park (Department of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2024.03.24
  • Accepted : 2024.06.22
  • Published : 2024.11.25

Abstract

Evaluation of the leakage rate is necessary for infrastructure where hermetic performance holds critical importance. This study conducted a test to evaluate the air leakage rate of cracked reinforced concrete panels. Hollow beam specimens with an air chamber in the web were prepared to provide a relatively simple setup for airtight pressure testing under 200 kPa pressure. While testing, the lower flange of the beam specimen was subjected to tension cracking under transverse loading, and air pressure was applied to the air chamber of the beam to measure the air leakage rate through the flange plate as the magnitude of loading increased. The test variables were the differential air pressure, flange plate thickness, and reinforcement ratio. The test results showed that the leakage rate increased in proportion to the differential pressure. When the reinforcement ratio increased from 0.7 to 1.3 %, the leakage rate decreased by 90 %. When the plate thickness increased from 75 to 100 mm, the leakage rate decreased by 91 %. The analysis of the test results showed that the leakage rate was proportional to the cube of the crack width (R2 = 0.91-0.95), which agreed with existing prediction models. When the crack width at rebar location was used, the existing models showed the best predictions for test results. This result indicates that to accurately predict the air leakage rate of reinforced concrete members, the critical crack width at the location of reinforcement (i.e. the smallest crack width in the member thickness) is more important than the crack width at the member surface.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korea Government (MSIT) (No. RS-2022-00144409).

References

  1. J. Park, L.-H. Kim, S.-W. Nam, I. Yeo, Performance evaluation of airtightness in concrete tube structures for super-speed train systems, Mag. Concr. Res. 65 (9) (2013) 535-545.  https://doi.org/10.1680/macr.12.00161
  2. P. Devkota, H.W. Jang, J.-W. Hong, J. Park, Finite element analysis-based damage metric for airtightness performance evaluation of concrete tube structures, KSCE J. Civ. Eng. 25 (4) (2021) 1385-1398.  https://doi.org/10.1007/s12205-021-1007-8
  3. R. Dameron, R. Dunham, Y. Rashid, H. Tang, Conclusions of the EPRI concrete containment research program, Nucl. Eng. Des. 125 (1) (1991) 41-55.  https://doi.org/10.1016/0029-5493(91)90005-3
  4. W.J.S.P. Buss, Proof of Leakage Rate of a Concrete Reactor Building, Concrete for Nuclear Reactors ACI Special Publication SP-34, III, 1972, pp. 1291-1320. 
  5. S.H. Rizkalla, B.L. Lau, S.H. Simmonds, Air leakage characteristics in reinforced concrete, J. Struct. Eng. 110 (5) (1984) 1149-1162.  https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(1149)
  6. T. Suzuki, K. Takiguchi, H. Hotta, Leakage of gas through concrete cracks, Nucl. Eng. Des. 133 (1) (1992) 121-130.  https://doi.org/10.1016/0029-5493(92)90096-E
  7. T.C. Hutchinson, T.E. Soppe, Experimentally measured permeability of uncracked and cracked concrete components, J. Mater. Civ. Eng. 24 (5) (2012) 548-559.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0000406
  8. T. Nagano, A. Kowda, T. Matumura, Y. Inada, K. Yajima, Experimental study of leakage through residual shear cracks on r/c walls, Proceedings of SMiRT-10 Q (1989) 139-144. 
  9. T. Suzuki, K. Takiguchi, Y. Ide, M. Uchiyama, Fundamental experiments on the leakage of gas through cracked concrete walls. Transactions of AIJ, Journal of structural and construction engineering 373 (1987) 27-33 (in Japanese).  https://doi.org/10.3130/aijsx.373.0_27
  10. N.W. Hanson, D.M. Schultz, J.J. Roller, A. Azizinamini, H. Tang, Testing of large-scale concrete containment structural elements, Nucl. Eng. Des. 100 (2) (1987) 129-149.  https://doi.org/10.1016/0029-5493(87)90039-2
  11. U. Greiner, W. Ramm, Air leakage characteristics in cracked concrete, Nucl. Eng. Des. 156 (1-2) (1995) 167-172.  https://doi.org/10.1016/0029-5493(94)00942-R
  12. N. Herrmann, L. Gerlach, H. Muller, D.K. Christoph Niklasch, Y. Le Pape, C. Bento, PACE-1450-Experimental investigation of the crack behaviour of prestressed concrete containment walls considering the prestressing loss due to aging, Transactions of SMiRT-20 (2009). 
  13. Y.-S. Choun, H.-K. Park, Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement, Nucl. Eng. Technol. 47 (7) (2015) 884-894.  https://doi.org/10.1016/j.net.2015.07.003
  14. S. Basha, R. Singh, R. Patnaik, S. Ramanujam, H. Kushwaha, V.V. Raj, Predictions of ultimate load capacity for pre-stressed concrete containment vessel model with BARC finite element code ULCA, Ann. Nucl. Energy 30 (4) (2003) 437-471.  https://doi.org/10.1016/S0306-4549(02)00075-0
  15. I. Tavakkoli, M. Kianoush, H. Abrishami, X. Han, Finite element modelling of a nuclear containment structure subjected to high internal pressure, Int. J. Pres. Ves. Pip. 153 (2017) 59-69.  https://doi.org/10.1016/j.ijpvp.2017.05.004
  16. N. Herrmann, H.S. Muller, C. Niklasch, S. Michel-Ponnelle, Y. LePape, C. Bento, PACE-1450-The crack and leakage behaviour of a pre-stressed concrete containment wall considering the prestressing loss due to aging, Transactions of SMiRT-22 (2013). 
  17. N.-H. Lee, K.-B. Song, Seismic capability evaluation of the prestressed/reinforced concrete containment, Yonggwang nuclear power plant units 5 and 6, Nucl. Eng. Des. 192 (1999) 189-203.  https://doi.org/10.1016/S0029-5493(99)00108-9
  18. G.M. Bae, Master's Thesis, In-Plane Shear Behavior of Reinforced Concrete Elements with High-Strength Materials, 129, Seoul National University, 2014. 
  19. J.A. Bruce, E.C. Bentz, O.-S. Kwon, Experimental method to investigate airflow through cracked concrete, ACI Mater. J. 119 (6) (2022) 221-231. 
  20. V. Picandet, A. Khelidj, H. Bellegou, Crack effects on gas and water permeability of concretes, Cement Concr. Res. 39 (6) (2009) 537-547.  https://doi.org/10.1016/j.cemconres.2009.03.009
  21. G. Rastiello, C. Boulay, S. Dal Pont, J.-L. Tailhan, P. Rossi, Real-time water permeability evolution of a localized crack in concrete under loading, Cement Concr. Res. 56 (2014) 20-28.  https://doi.org/10.1016/j.cemconres.2013.09.010
  22. F.M. White, Fluid Mechanics, 1990. New York. 
  23. G. De Marsily, Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic Press, 1986. 
  24. A.P. Oron, B. Berkowitz, Flow in rock fractures: the local cubic law assumption reexamined, Water Resour. Res. 34 (11) (1998) 2811-2825.  https://doi.org/10.1029/98WR02285
  25. H. Sogbossi, J. Verdier, S. Multon, Impact of reinforcement-concrete interfaces and cracking on gas transfer in concrete, Construct. Build. Mater. 157 (2017) 521-533.  https://doi.org/10.1016/j.conbuildmat.2017.09.095
  26. T. Soppe, M. Stoevhase, T. Hutchinson, Experimental Damage-Transport Correlations for Uniaxially-Loaded Reinforced Concrete Walls, University of California, San Diego, 2008. SSRP-08-07. 
  27. T. Wang, T.C. Hutchinson, Gas leakage rate through reinforced concrete shear walls: Numerical study, Nucl. Eng. Des. 235 (21) (2005) 2246-2260.  https://doi.org/10.1016/j.nucengdes.2005.04.006
  28. T.E. Soppe, T.C. Hutchinson, Assessment of gas leakage rates through damaged reinforced-concrete walls, J. Mater. Civ. Eng. 24 (5) (2012) 560-567.  https://doi.org/10.1061/(ASCE)MT.1943-5533.0000409
  29. P. Riva, L. Brusa, P. Contri, L. Imperato, Prediction of air and steam leak rate through cracked reinforced concrete panels, Nucl. Eng. Des. 192 (1) (1999) 13-30.  https://doi.org/10.1016/S0029-5493(99)00080-1
  30. T. Suzuki, K. Takiguchi, H. Hotta, N. Kojima, M. Fukuhara, K. Kimura, Experimental study on the leakage of gas through cracked concrete walls, Proceedings of SMiRT-10 Q (1989) 145-150. 
  31. L. Bahr, J. Sievers, First structure mechanical simulations of the vercors prestressed concrete containment mock-up, Transactions of SMiRT-24 (2017). 
  32. A. Borosnyoi, I. Snobli, Crack width variation within the concrete cover of reinforced concrete members, Epitoanyag 62 (3) (2010) 70-74.  https://doi.org/10.14382/epitoanyag-jsbcm.2010.14
  33. A. P'erez Caldentey, H. Corres Peiretti, J. Peset Iribarren, A. Giraldo Soto, Cracking of RC members revisited: influence of cover, φ/ρs, ef and stirrup spacing-an experimental and theoretical study, Struct. Concr. 14 (1) (2013) 69-78.  https://doi.org/10.1002/suco.201200016
  34. S. Mishra, I. Thangamani, R.K. Singh, Containment leakage characterization with BARCOM test results for design and over pressure conditions, Nucl. Eng. Des. 301 (2016) 245-254.  https://doi.org/10.1016/j.nucengdes.2016.03.004
  35. L.R. Bishnoi, R.P. Vedula, S.K. Gupta, Effect of reinforcing steel on pressurized air leakage through cracks in concrete, Transactions of SMiRT 21 (2011). Div-III. 
  36. N. Herrmann, H.S. Muller, S. Michel-Ponnelle, M. Bottoni, B. Masson, M. Herve, The Pace-1450 experiment - investigations regarding crack and leakage behaviour of a pre-stressed concrete containment, Transactions of SMiRT 24 (2017). Div-I. 
  37. L. Mengel, H. Krauss, D. Lowke, Water transport through cracks in plain and reinforced concrete - influencing factors and open questions, Construct. Build. Mater. 254 (2020) 118990.