Acknowledgement
This work has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945077 (PATRICIA Project).
References
- E. D'Agata, et al., SPHERE: irradiation of sphere-pac fuel of UPuO2-x containing 3% Americium, Nucl. Eng. Des. 275 (2014) 300-311, https://doi.org/10.1016/j.nucengdes.2014.05.021.
- A. Gallais-During, et al., Outcomes of the PELGRIMM project on Am-bearing fuel in pelletized and spherepac forms, J. Nucl. Mater. 512 (2018) 214-226, https://doi.org/10.1016/j.jnucmat.2018.10.016.
- European Commission, FAIRFUELS Euratom Project, 2015. https://cordis.europa.eu/project/id/232624.
- European Commission, PELGRIMM Euratom Project, 2017. https://cordis.europa.eu/project/id/295664.
- European Union's Horizon 2020 Research and Innovation programme, Patricia - partitioning and transmuter research Initiative in a Collaborative Innovation action. https://patricia-h2020.eu/, 2020.
- J. Leppanen, Serpent - a continuous-energy Monte Carlo reactor physics burnup calculation code, User's Manual (2015). http://montecarlo.vtt.fi/download/Serpent_manual.pdf.
- A. Rineiski, V. Sinitsa, C4P-TRAIN neutronics tool for supporting Safety studies of Innovative fast reactors. PHYTRA4 - the Fourth International Conference on Physics and Technology of Reactors and Applications, on CD-ROM, Marrakech, Morocco, 2018.
- A. Santamarina, et al., The JEFF-3.1.1 nuclear data library, ISBN 978-92-64-99074-6, NEA No. 6807, https://www.oecd-nea.org/jcms/pl_14470/the-jeff-3-1-1-nuclear-data-library?details=true, 2009.
- R.E. Alcouffe, et al., "DANTSYS: A Diffusion Accelerated Neutral Particle Transport Code System", LA-12969- M, Los-Alamos, 1995.
- P.K. Romano, et al., OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048.
- J.W. Eaton, et al., GNU Octave - A High-Level Interactive Language for Numerical Computations, 2016. Edition 4 for Octave version 4.2.1.
- T. Okawa, et al., Fuel behavior analysis code FEMAXI-FBR development and validation for core disruptive accident, Prog. Nucl. Energy 82 (2015) 80-85, https://doi.org/10.1016/j.pnucene.2014.11.002.
- M. Lainet, et al., GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516 (2019) 30-53, https://doi.org/10.1016/j.jnucmat.2018.12.030.
- A. Magni, et al., The TRANSURANUS fuel performance code, in: Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application, 2021-1, pp. 161-205, https://doi.org/10.1016/B978-0-12-818190-4.00008-5.
- D. Pizzocri, et al., SCIANTIX open-source code for fission gas behaviour: objectives and foreseen developments, in: IAEA Technical Meeting on the Development and Application of Open-Source Modelling and Simulation Tools for Nuclear Reactors, 2022. Milano, Italy.
- B. Labonne, et al., Development of an interatomic potential for mixed uranium-americium oxides and application to the determination of the structural and thermodynamic properties of (U,Am)O2 with americium contents below 50, J. Nucl. Mater. 579 (2023), https://doi.org/10.1016/j.jnucmat.2023.154390.
- A. Magni, et al., Modelling of thermal conductivity and melting behaviour of minor actinide-MOX fuels and assessment against experimental and molecular dynamics data, J. Nucl. Mater. 557 (2021-2), https://doi.org/10.1016/j.jnucmat.2021.153312.
- J.A. Kulesza, et al., MCNP code version 6.3.0 - Theory & user manual, LA-UR-22-30006, Rev 1 (2022). https://mcnp.lanl.gov/pdf_files/TechReport_2022_LANL_LA-UR-22-30006Rev.1_KuleszaAdamsEtAl.pdf.
- P. Botazzoli, et al., Extension and validation of the TRANSURANUS burn-up model for helium production in high burn-up LWR fuels, J. Nucl. Mater. 419 (2011) 329-338, https://doi.org/10.1016/j.jnucmat.2011.05.040.
- K. Lassmann, F. Hohlefeld, The revised URGAP model to describe the gap conductance between fuel and cladding, Nucl. Eng. Des. 103 (1987) 215-221, https://doi.org/10.1016/0029-5493(87)90275-5.
- M. Charles, M. Bruet, Gap conductance in a fuel rod: modelling of the FURET and CONTACT results, in: IAEA, International Working Group on Water Reactor Fuel Performance and Technology, IWGFPT/19, "Water Reactor Fuel Element Performance Computer Modelling", Meeting Proceedings, 1984. https://inis.iaea.org/collection/NCLCollectionStore/_Public/16/057/16057359.pdf.
- G. Zullo, et al., The SCIANTIX code for fission gas behaviour: Status, upgrades, separate-effect validation, and future developments, J. Nucl. Mater. 587 (2023), https://doi.org/10.1016/j.jnucmat.2023.154744.
- J.-Ch Sublet, et al., FISPACT-II: an advanced simulation system for Activation, transmutation and material modelling, Nucl. Data Sheets 139 (2017) pp77-137, https://doi.org/10.1016/j.nds.2017.01.002.
- A. Scolaro, et al., Investigation on the effect of eccentricity for fuel disc irradiation tests, Nucl. Eng. Technol. 53 (2021) 1602-1611, https://doi.org/10.1016/j.net.2020.11.003.
- N. Chauvin, et al., Benchmark Study on Innovative Fuels for Fast Reactors with Fuel Performance Codes, 2023. NEA/NSC/R(2022)5, https://www.oecd-nea.org/jcms/pl_79983/benchmark-study-on-innovative-fuels-for-fast-reactors-with-fuel-performance-codes.
- J. Lavarenne, et al., Burn-up dependent modeling of fuel-to-clad gap conductance and temperature predictions for mixed-oxide fuel in the ESFR-SMART core, J. Nucl. Eng. Radiat. Sci. 8 (2022), https://doi.org/10.1115/1.4050479.
- G.S. Chang, Cadmium depletion impacts on hardening neutron spectrum for advanced fuel testing in ATR, in: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, 2011. ISBN 978-85-63688-00-2, https://inis.iaea.org/collection/NCLCollectionStore/_Public/48/031/48031790.pdf?r=1.
- H.J. MacLean, S.L. Hayes, Irradiation of Metallic and Oxide Fuels for Actinide Transmutation in the ATR, 2007. Global 2007, Boise, Idaho, USA, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31c494e9cd15a8b950f4fd4d98a74ab962a3c7be.
- D.S. Dutt, R.B. Baker, Siex - a correlated code for the prediction of Liquid metal fast breeder reactor (LMFBR) fuel thermal performance, HEDL-TME 74-55 UC-79b, https://doi.org/10.2172/4181413, 1975.
- Y. Philipponneau, Thermal conductivity of (U,Pu)O2-x mixed oxide fuel, J. Nucl. Mater. 188 (1992) pp194-197, https://doi.org/10.1016/0022-3115(92)90470-6.
- T. Motta, D.R. Olander, Light Water Reactor Materials, Volume I: Fundamentals, American Nuclear Society Scientific Publications, 2017.
- E. Federici, et al., Helium production and behaviour in nuclear fuels during irradiation in LWR, in: Proceedings of the International LWR Fuel Performance Meeting, San Francisco, USA, 30 Sep. - 3 Oct. 2007, 2007, pp. 664-673 (paper 1057).
- M. Suzuki, H. Saitou, Light water reactor fuel analysis code FEMAXI-6 (Ver.1) - detailed structure and User's manual, JAEA/Data/Code 2005-003 (2005). https://jopss.jaea.go.jp/pdfdata/JAEA-Data-Code-2005-003.pdf.