DOI QR코드

DOI QR Code

농업용 방제 드론의 분사 노즐 변화에 따른 실험적분석

Experimental Analysis of the Effects of Spray Nozzle Variations on Agricultural Pest Control Drones

  • 이우람 (경운대학교 무인기공학과)
  • Wooram Lee (Dept. of Unmanned and Autonomous Vehicle Engineering, Kyungwoon Universitiy)
  • 투고 : 2024.08.15
  • 심사 : 2024.11.05
  • 발행 : 2024.11.30

초록

최근 멀티콥터를 적용한 농업용 방제 작업에 대한 수요가 높아짐에 따라 높은 작업 효율, 편의성 및 적용성 등에 관한 요구가 높아지고 있다. 농업용 방제 작업의 경우 비산 현상에 관한 문제를 개선하기 위해 선행연구와 비교분석을 통해 다양한 노즐에 대한 비산 현상 저감 방안에 대한 실험적 검증을 수행하였다. 본 연구에서는 노즐 변화에 따른 비산 현상에 관한 특성을 실험적으로 검증하는 것을 목적으로 하며, 살포 후 감수지에 대한 평가를 통해 도포성능을 예측할 수 있다. 실험 결과 DG 노즐이 피복률이 상대적으로 높게 나타났으며, 비행 속도가 증가함에 따라 피복률은 상대적으로 감소하였다. 이는 비행 속도를 증가하기 위해 기체의 기울기 변화 및 로터의 추력 증가에 따라 하향 풍이 상대적으로 감소하여 비산 현상에 대한 영향을 증가시켜 목표 지점에 낙하 입자를 감소시켰다. 비행 고도가 증가함에 따라 피복률은 상대적으로 감소하였다. 이는 비행 고도가 높아짐에 따라 유효 살포 거리가 넓어지며, 단위면적당 낙하 입자의 부착량이 감소하였다. 이를 통해 적절한 분사 조건(비행 고도 및 속도)을 도출할 수 있으며, 방제 작업의 비산 현상을 최소화하여 최적의 방제 작업 공정에 적용하고자 한다.

An agricultural drones are the increasing demand for the use of multicopters in spraying operations, there is a growing emphasis on high operational efficiency, convenience, and applicability. In agricultural spraying tasks, efforts to address the issue of spraying drift have led to experimental validation of various nozzle designs aimed at reducing drift through comparative analysis with prior research. This study aims to experimentally validate the characteristics of drift associated with different nozzles and predict application performance by evaluating the target areas post-spraying. The results showed that the DG nozzle achieved a relatively higher coverage rate. As flight speed increased, coverage rate decreased relatively. This was due to reduced downward wind resulting from changes in the aircraft's tilt and increased rotor thrust, which enhanced drift and reduced the number of droplets reaching the target area. This was because higher flight altitude resulted in a wider effective spraying distance, which reduced the droplet deposition per unit area. Similarly, as flight altitude increased, the coverage rate also decreased relatively. This decrease in coverage was due to the wider effective spraying distance at higher altitudes, resulting in reduced droplet deposition per unit area. These findings allow for the derivation of optimal spraying conditions(flight altitude and speed) and aim to minimize drift in pest control operations, thereby applying these optimal conditions to improve the spraying process.

키워드

과제정보

이 연구는 2024년도 경운대학교 교내학술연구비 지원으로 연구되었음.

참고문헌

  1. S. Lee, S. Y. Choi, K. H. Cho, D. Joo, D. Lim and J. Kim, "Drone Mapping System and Functions for Agricultural Spraying Drones Based on Spray Area," Transactions of the Korean Society of Mechanical Engineers C, Vol. 12, No. 1, pp. 1-9, 2024. https://doi.org/10.3795/KSME-C.2024.12.1. 001.
  2. Korea Institute of Aviation Safety Technology, Domestic and Foreign Drone Industry Trends Analysis Report, KIAST, Incheon, Republic of Korea, pp. 1-228, 2021.
  3. B. G. Gang, "The flight Test Procedures For Agricultural Drones Based on 5G Communication," Journal of Aerospace System Engineering, Vol. 17, No. 2, pp. 38-44, 2023. https://doi.org/10.20910/JASE.2023.17.2.38.
  4. J. T. Lim, "Development of Spray Calculation Algorithm Using the Pest Control Drones," Journal of Convergence for Information Technology, Vol. 10, No. 10, pp. 135-142, 2020. http://dx.doi. org/10.22156/CS4SMB.2020.10.10.13.
  5. Vijay Rana Mahima, "Impact of drone technology in agriculture,"Journal of Current Microbiology and Applied Sciences, Vol. 9, No. 1, pp. 1613-1619, 2020. https://doi.org/10.1002/9781394168002.ch14.
  6. U. J. Oh and J. T. Lim, "A Study on Drone Nozzle Design for Greenhouse Shading," The Journal of Korea Institute of Convergence Signal Processing, Vol. 24, No. 4, pp. 249-254, 2023. https://doi.org/10.23087/jkicsp. 2023.24.4.011
  7. W. Lee, S. B. Lee and J. T. Lim, "Study on Experimental Verification of Uniform Control using Agricultural Drone," The Journal of the Convergence on Culture Technology, Vol. 9, No. 2, pp. 575-580, 2023. https://doi.org/10.17703/JCCT.2023.9.2.575
  8. N. Otsu, "A threshold selection method from gray-level histograms," IEEE Transactions on System, Man and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.
  9. C. Nansen, et. al., "Optimizing pesticide spray coverage using a novel web and smartphone tool, SnapCard," Agronomy for Sustainable Development, Vol. 35, pp. 1075-1085, 2015.
  10. O. B. Ozluoymak and A. Bolat, "Development and assessment of a novel imaging software for optimizing the spray parameters on water-sensitive papers," Computers and Electronics in Agriculture, Vol. 168, 2020.
  11. K. J. Kang, "Nozzle flow characteristics and simulation of pesticide spraying drone," Smart Media Journal, Vol. 8, No. 4, pp. 38-45, 2019. https://doi.org/10.30693/SMJ.2019.8.4.38
  12. W. Lee, "Experimental Verification of the Characteristic Analysis of the Agricultural Drone using Smart Operating Mode," The Journal of the Convergence on Culture Technology, Vol. 9, No. 6, pp. 1049-1055, 2023. http://dx.doi.org/10.17703/JCCT.2023.9.6.1049
  13. S. H. Yu, J. Lee, Y. Kang and C. G. Lee, "Effects of UAV Nozzle and Spraying Condition on Spraying Performance in Rice Field," Journal of the Korea Academia-Industrial cooperation Society, Vol. 23, No. 12, pp. 803-808, 2022. https://doi.org/10.5762/KAIS.2022.23.12.803