DOI QR코드

DOI QR Code

금속질산염을 전구체로 사용한 NiO-CuO 나노복합재료의 합성

Synthesis of NiO-CuO Nano Composite using Nickel(II) Nitrate Metal Salt as a Precursor

  • 김수종 (한라대학교 신소재화학공학과) ;
  • 김재호 (한라대학교 신소재화학공학과)
  • 투고 : 2024.08.27
  • 심사 : 2024.11.05
  • 발행 : 2024.11.30

초록

서로 다른 특성을 나타내는 두 개의 금속산화물로 이루어진 세라믹스 나노복합재료는 그들의 단일산화물이 가지는 전기적, 광학적, 자기적 및 촉매 특성보다 더 우수한 향상된 특성을 나타낸다. 이러한 세라믹스 나노입자는 합성하는 방법에 따라 생성되는 입자의 특성이 현저하게 달라진다. 본 연구는 액상전구체를 사용한 합성법으로 NiO-CuO 나노복합재료를 합성하고 생성된 NiO-CuO 입자의 특성을 조사하는 것을 목표로 하였다. 니켈과 구리의 질산염으로 제조한 수용액을 전구체로 사용하여 산화니켈-산화구리(NiO-CuO) 나노복합재료 입자를 합성하였다. 니켈과 구리의 금속염 수용액이 천연고분자 매트릭스인 전분(starch)에 함침된 전구체는 낮은 하소온도에서 NiO-CuO 나노복합재료가 생성되는 것을 확인하였다. 또한, 전구체의 하소온도 증가에 따라 생성되는 NiO-CuO 입자의 결정구조, 구성 원소 및 입자크기를 X선회절분석(XRD), EDS와 SEM으로 분석하였다. 하소온도 400℃에서 순수한 NiO-CuO 상이 형성되었고 하소온도가 증가할수록 생성되는 NiO-CuO 복합재료의 입자크기 및 결정성이 증가함을 확인하였다.

Ceramic nanocomposites made of two metal oxides exhibiting different properties exhibit better improved properties than the electrical, optical, magnetic, and catalytic properties of their single oxides. These Ceramics nanoparticles have remarkably different properties of the particles produced depending on how they are synthesized. This study aims to synthesize NiO-CuO nanocomposites using a new synthesis method and to investigate the properties of the resulting NiO-CuO particles. NiO-CuO nanocomposite nanoparticles were synthesized using an aqueous solution prepared from nickel and copper nitrates as a precursor. It was confirmed that a NiO-CuO noncomposite was formed even when the precursor impregnated with starch, a natural polymer matrix, in which the aqueous metal salt solution of nickel and copper was calcined at a low temperature. In addition, the crystal structure, constituent elements, and particle size of NiO-CuO particles generated as the calcination temperature of the precursor increased were analyzed by X-ray diffraction analysis (XRD), EDS, and SEM. It is confirmed that a pure NiO-CuO phase was formed at the calcination temperature of 400℃, and the particle size and crystallinity of the produced NiO-CuO composite material increased as the calcination temperature increased.

키워드

참고문헌

  1. M. P. Srinivasan and N. Punithavelan, "Structural, morphological and dielectric investigations on NiO/CuO/ZnO combined semiconductor metal oxide structures based ternary nanocomposites," Materials Research Express, Vol. 5, No. 7, pp. 075033, 2018. https://doi/10.1088/2053-1591/aad079
  2. M. Z. Ishaquea, Y. Zaman, A. Arifa, A. B. Siddique, M. Shahzadfa, D. Alic, M. Aslame, H. Zaman and M. Faizan, "Fabrication of ternary metal oxide (ZnO:NiO:CuO) nanocomposite heterojunctions for enhanced photocatalytic and antibacterial applications," RSC Advances, Vol. 13, pp. 30838-30854, 2023. https://doi.org/10.1039/D3RA05170F
  3. Al. O. Juma, El. A. A. Arbab, C. M. Muiva, L. M. Lepodise, G. T. Mola, "Synthesis and characterization of CuO-NiO-ZnO mixed metal oxide nanocomposite," Journal of Alloys and Compounds, Vol. 723, pp. 866-872, 2017. https://doi/10.1016/j.jallcom.2017.06.288
  4. S. Chatterjee, A. Ray, M. Mandal, and S. Das, "Synthesis and Characterization of CuO-NiO Nanocomposites for Electrochemical Supercapacitors," Journal of Materials Engineering and Performance, Vol. 29, pp. 8036-8048, December 2020. https://doi.org/10.1007/s11665-020-05261-3
  5. S. Anitha, C. Kayathiri, M. Karthika, M. Suganya, and A. R. Balu, "Potential suitability of NiO-CuO nanocomposite for photoconductive sensor, soft magnetic materials applications and as antimicrobial agent," Materials Science and Engineering: B, Vol. 268, 115143, June 2021. https://doi.org/10.1016/j.mseb.2021.115143
  6. D. S. Mann, S. Lim, and S.-I. Na, "NiO-CuO nanocomposite films by spin coating and blade coating methods for efficient hole transport layers in perovskite solar cells," Journal of Korean Society for Imaging Science and Technolog, Vol. 26, No. 1, pp. 1-10, March 2020. http://dx.doi.org/10.14226/KSIST.2020.26.01.1
  7. A. Rahdar, M. Aliahmad, Y. Azizi, N. Keikha, M. Moudi, and F. keshavarzi, "CuO-NiO Nano composites: Synthesis, Characterization, and Cytotoxicity evaluation," Nanomedicine Research Journal, Vol. 2, No. 2, pp. 78-86, December 2016. https://doi.org/10.22034/nmrj.2017.56956.1057
  8. A. Rahdar1, M. Aliahmad, Y. Azizi, N. Keikha, M. Moudi, F. keshavarz, "CuO-NiO Nano composites: Synthesis, Characterization, and Cytotoxicity evaluation", Nanomed Res J, Vol. 2, No. 2, pp. 78-86, Spring 2017. https://doi.org/10.22034/nmrj.2017.56956.1057
  9. E. F. Abo Zeida, A.M. Nassar, M. A. Husseind, M.M. Alam, A. M. Asiri, H.H. Hegazy, M.M. Rahmand, "Mixed oxides CuO-NiO fabricated for selective detection of 2-Aminophenol by electrochemical approach", Journal of Materials Research and Technology, Vol. 2, No. 2, pp. 1457-1467, 2020. https://doi.org/10.1016/j.jmrt.2019.11.071
  10. S. Joshi, M. Mudigere, L. Krishnamurthy, G. L. Shekar, "Growth and morphological studies of NiO/CuO/ZnO based nanostructured thin films for photovoltaic applications," Chemical Papers, Vol. 68 No. 11, pp. 1584-1592, 2014. https://doi.org/10.2478/s11696-014-0596-9
  11. S.-J. Kim, and K. Ogino, "Synthesis of TiO2 nanoparticles using titanium tetraisopropoxide and starch," Journal of Ceramic Processing Research, Vol. 20, No. 6, pp. 665-669, 2019. https://doi.org/10.36410/jcpr.2019.20.6.665
  12. Y. L. Song, S. H. Choi, S. J. Kim, Y. H. Song, T. Masaki, and D. H. Yoon, "Synthesis of nano sized Eu3+ doped Y(P,V)O4 phosphors by using cellulose assisted liquid phase precursor process," Journal of Ceramic Processing Research, Vol. 17, No. 3, pp. 202-204, 2016. https://doi.org/10.36410/jcpr.2016.17.3.202
  13. J. H. Kim, G. R. Kim, J. T. Choi, S. J. Kim, "Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance," The Journal of the Convergence on Culture Technology (JCCT), Vol. 9, No. 5, pp. 523-528, September 2023. https://dx.doi.org/10.17703/JCCT.2023.9.5.523
  14. A. G. Ramu, M. L. Aruna Kumari, M. S. Elshikh, H. H. Alkhamis, A. F. Alrefaei, D. Choi, "A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in aqueous medium, " Chemosphere, Vol. 271, pp. 129475, 2021. https://doi.org/10.1016/j.chemosphere.2020.12947
  15. Shehata, M. M., Youssef, W. M., Mahmoud, H. H., and Masoud, A. M., "Sol-gel synthesis of NiO/CuO nanocomposites for uptake of rare earth elements (Ho, Yb, and Sm) from aqueous solutions," Russian Journal of Inorganic Chemistry, Vol. 65, pp. 279-289, (2020). https://doi.org/10.1134/S0036023620020163
  16. A. Rahdar, M. Aliahmad, Y. Azizi, N. Keikha, M. Moudi, and F. Keshavarzi, "CuO-NiO nano composites: synthesis, characterization, and cytotoxicity‎ evaluation,"‎. Nanomedicine Research Journal, Vol. 2, No. 2, pp. 78-86, 2017. https://doi.org/10.22034/NMRJ.2017.56956.1057