Acknowledgement
The author would like to thank the referees for their thorough review with constructive suggestions and valuable comments on the paper. Project supported by the National Natural Science Foundation of China (No. 11971076), and the Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20240079).
References
- J.J. Hopfield: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. U.S.A 79 (1982), 2554-2558. https://doi.org/10.1073/pnas.79.8.2554
- B.W. Liu: Almost periodic solutions for Hopfield neural networks with continuously distributed delays. Math. Comput. Simul. 73 (2007), 327-335. https://doi.org/10.1016/j.m-atcom.2006.05.027
- Z.Y. Guo, S.F. Yang & J. Wang: Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling. IEEE Trans. Neural Netw Learn Syst. 26 (2014), 1300-1311. https://doi.org/10.1109/TNNLS.2014.2354432
- C. Aouiti: Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks. Neural Comput. Appl. 29 (2018), 477-495. https://doi.org/10.1007/s00521-016-2558-3
- F.X. Zhang & Y. Li: Almost periodic solutions for higher-order Hopfield neural networks without bounded activation functions. Electron J. Differ. Eq. 99 (2007), 1-10. https://doi.org/10.1007/978-88-470-0665-219
- B. Xiao & H. Meng: Existence and exponential stability of positive almost periodic solutions for high-order Hopfield neural networks. Appl. Math. Model 33 (2009), 532-542. https://doi.org/10.1016/j.apm.2007.11.027
- C.X. Huang, B.W Liu, H.D. Yang & J.D. Cao: Positive almost periodicity on SICNNs incorporating mixed delays and D operator. Nonlinear Anal.-Model 27 (2022), 719-739. https://doi.org/10.15388/namc.2022.27.27417
- B.W Liu: Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays. Math. Methods Appl. Sci. 40 (2017), 167-174. https://doi.org/10.1002/mma.3976
- B.W Liu: Asymptotic behavior of solutions to a class of non-autonomous delay differential equations. J. Math. Anal. Appl. 446 (2017), 580-590. https://doi.org/10.1016/j.jmaa.2016.09.001
- J.D. Cao, J.L. Liang & J. Lam: Exponential stability of high-order bidirectional associative memory neural networks with time delays. Physica D 199 (2004), 425-436. https://doi.org/10.1016/j.physd.2004.09.012
- B.W. Liu & L.H. Huang: Positive almost periodic solutions for recurrent neural networks. Nonlinear Anal.-Real 9 (2008), 830-841. https://doi.org/10.1016/j.nonrwa.2007.01.003
- X. Long & S.H. Gong: New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays. Appl. Math. Lett. 100 (2020), 106027. https://doi.org/10.1016/j.aml.2019.106027
- S.L. Xiao: Global exponential convergence of HCNNs with neutral type proportional delays and D operator. Neural Processing Letters 49 (2019), 347-356. https://doi.org/10.1016/j.amc.2016.03.018
- L.V. Hien: On global exponential stability of positive neural networks with time-varying delay. Neural Netw. 87 (2016), 22-26. https://doi.org/10.1016/j.neunet.2016.11.004
- C.X. Huang & B.W Liu: Traveling wave fronts for a diffusive Nicholsons Blowflies equation accompanying mature delay and feedback delay. Appl. Math. Lett. 134 (2022), 108321. https://doi.org/10.1016/j.aml.2022.108321
- G. Yang: Exponential stability of positive recurrent neural networks with multiproportional delays. Neural Process Lett. 49 (2019), 67-78. https://doi.org/10.1007/s11063-018-9802-z
- L.V. Hien & L.D. Hai-An: Positive solutions and exponential stability of positive equilibrium of inertial neural networks with multiple time-varying delays. Neural Comput. Appl. 31 (2019), 6933-6943. https://doi.org/10.1007/s00521-018-3536-8
- C.X. Huang, B.W. Liu & C.F Qian: Stability on positive pseudo almost periodic solutions of HPDCNNs incorporating D operator. Math. Comput. Simula. 190 (2021), 1150-1163. https://doi.org/10.1016/j.matcom.2021.06.027
- Y.K. Deng, C.G. Huang & J.D. Cao: New results on dynamics of neutral type HCNNs with proportional delays. Math. Comput. Simul. 187 (2021), 51-59. https://doi.org/10.10-16/J.MATCOM.2021.02.001 https://doi.org/10.10-16/J.MATCOM.2021.02.001
- C.Z. Bai: Global stability of almost periodic solutions of Hopfield neural networks with neutral time-varying delays. Applied Mathematics and Computation 203 (2008), 72-79. https://doi.org/10.1016/j.amc.2008.04.002