References
- I.A. Bakhtin: The contraction principle in quasimetric spaces. Funkts. Anal. 30 (1989) (in Russian), 26-37. https//doi.org/19.12691/tjant,6-2-2
- A. Branciari: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 57 (2000), 31-37. https//doi.org/10.5486/PMD. 2000.2133
- S. Czerwik: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. https//doi.org/10.1007/BF01304884
- S. Czerwik: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 263-276. https//doi.org/10.37394,23206.2021.20.32 https://doi.org/10.37394,23206.2021.20.32
- Z. Kadelburg & S. Radenovi'c: Fixed point results in generalized metric spaces without Hausdorff property. Math. Sci. 8 (2014), 125. https//doi.org/10.100711540096-914-0125-6 https://doi.org/10.100711540096-914-0125-6
- Z. Kadelburg & S. Radenovi'c: On generalized metric spaces: a survey. TWMS J. Pure Appl. Math. 5 (2014), no. 1, 3-13. https//doi.org/10.1007/s11784-015-0232-5
- M.S. Khan, M. Swaleh & S. Sessa: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30 (1984), 1-9. https//doi.org/10.1917/50004972700001659
- W. Kirk & N. Shahzad: Fixed Point Theory in Distance Spaces. Springer. (2014). https//doi.org/10.1007/978-3-319-10927-5
- B. Samet: Discussion on A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces by A. Branciari. Publ. Math. 76 (2010), 493-494. https//doi.org/10.54861 PMD.2000.2133 https://doi.org/10.54861PMD.2000.2133
- I.R. Sarma, J.M. Rao & S.S. Rao: Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2 (2009), no. 3, 180-182. https//doi.org/10.22436/ jnsa0002003006
- T. Suzuki: Generalized metric spaces do not have the compatible topology. Appl. Anal. (2014), 458098. https//doi.org/10.1155/2014/458028