DOI QR코드

DOI QR Code

Advancing BNCT: A Concise Review on 18F Labeling of Tracers

  • Iqra Bibi (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS)) ;
  • Ji-Ae Park (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS)) ;
  • Jung Young Kim (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS)) ;
  • Kwang Il Kim (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS)) ;
  • Sajid Mushtaq (Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS))
  • Received : 2024.05.21
  • Accepted : 2024.06.06
  • Published : 2024.06.30

Abstract

Boron neutron capture therapy (BNCT) stands at the forefront of cancer treatment, offering a pioneering approach to enhance the rate of recovery for patients who show noncompliance to conventional therapies. The 18F labeling of BNCT tracers signifies a groundbreaking leap in molecular imaging. Hence, the aim of this brief review is to outline the radiofluorination strategies utilized for BNCT tracers. Radiofluorination of L-BPA, a ligand of L-type amino acids, can be carried out via electrophilic as well as nucleophilic substitution reactions. It's solubility can be elevated by complexing it with fructose to form BPA-fructose complex, followed by radiolabeling with 18F. In addition to electrophilic and nucleophilic radiofluorination, we have briefly presented the radiofluoro exchange method, which is applicable for amino acids having trifluoroborate groups, i.e., FBY (fluoroboronotyrosine), featuring both imaging and therapeutic functionalities. Furthermore, this review offers an inclusive array of radiofluorination strategies employed for other BNCT tracers, including o-carborane and fenbufen boronopinacol.

Keywords

Acknowledgement

This work was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by MSIT, Republic of Korea (No. 50462-2024).

References

  1. Ali F, S Hosmane N, Zhu Y. Boron chemistry for medical applications. Molecules 2020;25(4):828.
  2. Deng JP, Yu CS. Recent Development of Radiofluorination of Boron Agents for Boron Neutron Capture Therapy of Tumor: Creation of 18F-Labeled CF and BF Linkages. Pharmaceuticals 2023;16(1):93.
  3. Lakshminarayana G, Kebaili I, Dong MG, Al-Buriahi MS, Dahshan A, Kityk IV, Lee DE, Yoon J, Park T. Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems. J Mater Sci 2020;55:5750-71.
  4. Hawthorne MF. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew Chem Int Ed Engl 1993;32(7):950-84.
  5. Rose PB, Erickson AS, Mayer M, Nattress J, Jovanovic I. Uncovering special nuclear materials by low-energy nuclear reaction imaging. Sci Rep 2016;6(1):24388.
  6. Suzuki M. Boron neutron capture therapy (BNCT): A unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol 2020;25(1):43-50.
  7. Evangelista L, Jori G, Martini D, Sotti G. Boron neutron capture therapy and 18F-labelled borophenylalanine positron emission tomography: A critical and clinical overview of the literature. Appl Radiat Isot 2013;74:91-101.
  8. Lan TL, Chou FI, Lin KH, Pan PS, Lee JC, Huang WS, Liu YM, Chao Y, Chen YW. Using salvage Boron Neutron Capture Therapy (BNCT) for recurrent malignant brain tumors in Taiwan. Appl Radiat Isot 2020;160:109105.
  9. Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Reports of Practical Oncology & Radiotherapy 2018;23(5):462-73.
  10. Wittig A, Michel J, Moss RL, Stecher-Rasmussen F, Arlinghaus HF, Bendel P, Mauri PL, Altieri S, Hilger R, Salvadori PA, Menichetti L. Boron analysis and boron imaging in biological materials for boron neutron capture therapy (BNCT). Crit Rev Oncol Hematol 2008;68(1):66-90.
  11. Ainslie-McLaren G, Fee A, McKinstray J, Lee AB, Bolster AA. Red cell volume measurement-using indium as a replacement for chromium. Nucl Med Commun 2020;41(6):589-96.
  12. Madsen MT. Recent advances in SPECT imaging. J Nucl Med 2007;48(4):661-73.
  13. Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A. Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 2011;1228(1):1-8.
  14. Hicks RJ, Hofman MS. Is there still a role for SPECT-CT in oncology in the PET-CT era?. Nat Rev Clin Oncol 2012;9(12):712-20.
  15. Kirk KL. Fluorination in medicinal chemistry: methods, strategies, and recent developments. Org Proc Res & Develop 2008;12(2):305-21.
  16. Krasikova RN. Nucleophilic synthesis of 6-l-[18F] FDOPA. Is copper-mediated radiofluorination the answer?. Molecules 2020;25(19):4365.
  17. Gona KB. Exploring new labelling strategies for boronated compounds: towards fast development and efficient assessment of BNCT drug candidates (2015).
  18. Gona KB, Gomez-Vallejo V, Manea I, Malmquist J, Koziorowski J, Llop J. Radiolabeling Strategies for Boron Clusters: Toward Fast Development and Efficient Assessment of BNCT Drug Candidates. Boron-Based Compounds: Pot and Emerg Appl Med 2018;232-67.
  19. Vahatalo JK, Eskola O, Bergman J, Forsback S, Lehikoinen P, Jaaskelainen J, Solin O. Synthesis of 4-dihydroxyboryl-2-[18F] fluorophenylalanine with relatively high-specific activity. J Label Compd Radiopharm: The Official Journal of the International Isotope Society 2002;45(8):697-704.
  20. Ishiwata K, Ido T, Mejia AA, Ichihashi M, Mishima Y. Synthesis and radiation dosimetry of 4-borono-2-[18F] fluoro-D, L-phenylalanine: a target compound for PET and boron neutron capture therapy. Int J Radiat Appl Instrum Part A Appl Radiat Isot 1991;42(4):325-8.
  21. Coenen HH. Fluorine-18 labeling methods: features and possibilities of basic reactions. PET Chemistry: The Driving Force in Mol Imag 2007:15-50.
  22. Coenen HH, Ermert J. 18F-labelling innovations and their potential for clinical application. Clinical and Translational imaging 2018;6(3):169-93.
  23. Lemaire C. Plevenaux A, Cantineau R, Christiaens L, Guillaume M, Comar D (1993) Appl Radiat Isot 1991;44:737.
  24. Yang Q, Zhu W, Ren C, Ji H, Wang D, Liu Y, Li F, Du Y, Liu Y, Huo L. Biodistribution and radiation dosimetry of D-isomer of 4-borono-2-[18F] fluoro-phenylalanine: A comparative PET/CT study with L-isomer in healthy human volunteers. Nucl Med Biol 2021;94:32-7.
  25. He J, Yan H, Du Y, Ji Y, Cai F, Fan W, Huo L, Liu YH, Wang Z, Li S. Nucleophilic radiosynthesis of boron neutron capture therapy-oriented PET probe [18F] FBPA using aryldiboron precursors. Chem Comm 2021;57(71):8953-6.
  26. Kabalka GW, Smith GT, Dyke JP, Reid WS, Longford CD, Roberts TG, Reddy NK, Buonocore E, Hubner KF. Evaluation of fluorine-18-BPA-fructose for boron neutron capture treatment planning. J Nucl Med 1997;38(11):1762-7.
  27. Imahori Y, Ueda S, Ohmori Y, Sakae K, Kusuki T, Kobayashi T, Takagaki M, Ono K, Ido T, Fujii R. Positron emission tomography-based boron neutron capture therapy using boronophenylalanine for high-grade gliomas: Part II. Clin Cancer Res: an official journal of the American Association for Cancer Research 1998;4(8):1833-41.
  28. Stocklin G, Qaim SM, Rosch F. The impact of radioactivity on medicine metallic. Radiochimca Acta 1995;70(Supplement):249-72.
  29. Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angewandte Chemie International Edition 2008;47(47):8998-9033.
  30. He J, Yan H, Du Y, Ji Y, Cai F, Fan W, Huo L, Liu YH, Wang Z, Li S. Nucleophilic radiosynthesis of boron neutron capture therapy-oriented PET probe [18F] FBPA using aryldiboron precursors. Chem Comm 2021;57(71):8953-6.
  31. Tsukada H, Sato K, Fukumoto D, Kakiuchi T. Evaluation of D-isomers of O-18 F-fluoromethyl, O-18 F-fluoroethyl and O-18 F-fluoropropyl tyrosine as tumour imaging agents in mice. EJNMMI 2006;33:1017-24.
  32. Gona KB, Gomez-Vallejo V, Manea I, Malmquist J, Koziorowski J, Llop J. Radiolabeling Strategies for Boron Clusters: Toward Fast Development and Efficient Assessment of BNCT Drug Candidates. Boron-Based Compounds: Pot Emerg Appl Med 2018:232-67.
  33. Gona KB, Gomez-Vallejo V, Padro D, Llop J. [18F] Fluorination of o-carborane via nucleophilic substitution: towards a versatile platform for the preparation of 18F-labelled BNCT drug candidates. Chem Comm 2013;49(98).
  34. Chang TY, Chang WY, Chen YW, Ho MC, Chang CW, Lau SO, Peng NJ, Wu CY. Comparison of the synthesis and biological properties of no-carrier-added and carrier-added 4-borono-2-[18F] fluorophenylalanine ([18F] FBPA). Nucl Med Biol 2023;116:108313.
  35. Scroggie KR, Perkins MV, Chalker JM. Reaction of [18F] fluoride at heteroatoms and metals for imaging of peptides and proteins by positron emission tomography. Front Chem 2021;9:687678.
  36. Liu Z, Chao D, Li Y, Ting R, Oh J, Perrin DM. From minutes to years: predicting organotrifluoroborate solvolysis rates. Chem-A Eur J 2015;21(10):3924-8.
  37. Li J, Shi Y, Zhang Z, Liu H, Lang L, Liu T, Chen X, Liu Z. A metabolically stable boron-derived tyrosine serves as a theranostic agent for positron emission tomography guided boron neutron capture therapy. Biocon Chem 2019;30(11):2870-8.
  38. Li Z, Kong Z, Chen J, Li J, Li N, Yang Z, Wang Y, Liu Z. 18F-Boramino acid PET/CT in healthy volunteers and glioma patients. Eur J Nucl Med Mol Imag 2021:1-9.
  39. Confalonieri L, Imperio D, Erhard A, Fallarini S, Compostella F, Del Grosso E, Balcerzyk M, Panza L. Organotrifluoroborate Sugar Conjugates for a Guided Boron Neutron Capture Therapy: From Synthesis to Positron Emission Tomography. ACS omega 2022;7(51):48340-8.
  40. Yeh CN, Chang CW, Chung YH, Tien SW, Chen YR, Chen TW, Huang YC, Wang HE, Chou YC, Chen MH, Chiang KC. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma. Eur J Pharm Sci 2017;107:217-29.