DOI QR코드

DOI QR Code

음향기법을 이용한 해저 저질 특성과 먹이생물 분포 평가

Assessment of Seabed Sediment Characteristics and Prey Organism Distribution Using a Hydroacoustic Survey

  • 이사라 (국립부경대학교 해양생산관리학부 수산물리학전공) ;
  • 송세현 (국립수산과학원 수산자원연구부 연근해자원과) ;
  • 오우석 (국립부경대학교 저탄소해양생산기술연구소) ;
  • 이창근 (서울대학교 지구환경과학부) ;
  • 김종성 (서울대학교 지구환경과학부) ;
  • 이경훈 (국립부경대학교 해양생산시스템관리학부)
  • Sara Lee (Department of Fisheries Physics, Pukyong National University) ;
  • Se-Hyun Song (National Institute of Fisheries Science) ;
  • Wooseok Oh (Institute of Low-Carbon Marine Production Technology, Pukyong National University) ;
  • Chang Keun Lee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jong Seong Khim (School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University) ;
  • Kyounghoon Lee (Division of Marine Production System Management, Pukyong National University)
  • 투고 : 2024.07.10
  • 심사 : 2024.09.04
  • 발행 : 2024.10.31

초록

In this study, we assessed the volume backscattering strength (SV) of seabed sediments using a scientific echo sounder. The characteristics of the seabed sediments were determined using a sediment core sampler. Additionally, the SV and nautical area scattering coefficient (NASC) values for prey organisms were measured within the seabed sediments using the scientific echo sounder. Grain size analysis showed that the sediments in the surveyed area were mostly composed of sand and clay, and the NASC values for fish and zooplankton were relatively high in sediments composed of clay and silt.

키워드

과제정보

논문은 2024년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210427, 과학기술기반해양환경영향평가 기술개발).

참고문헌

  1. Anderson MA, Conkle JL, Pacheco P and Gan J. 2013. Use of hydroacoustic measurements to characterize bottom sediments and guide sampling and remediation of organic contaminants in lake sediments. Sci Total Environ 458-460, 117-124. https://doi.org/10.1016/j.scitotenv.2013.04.009.
  2. Bulut S and Ergin S. 2023. An investigation on hydro-acoustic characteristics of submerged bodies with different geometric parameters. Continuum Mech Therm 35, 1123-1146. https://doi.org/10.1007/s00161-022-01086-8.
  3. Campbell KA, Nelson CS, Alfaro AC, Boyd S, Greinert J, Nyman S, Grosjean E, Logan GA, Gregory MR, Cooke S, Linke P, Milloy S and Wallis I. 2010. Geological imprint of methane seepage on the seabed and biota of the convergent Hikurangi Margin, New Zealand: Box core and grab carbonate results. Mar Geol 272, 285-306. https://doi.org/10.1016/j.margeo.2010.01.002.
  4. Dalley KL, Gregory RS, Morris CJ and Cote D. 2017. Seabed habitat determines fish and macroinvertebrate community associations in a subarctic marine coastal nursery. Trans Am Fish Soc 146, 1115-1125. https://doi.org/10.1080/00028487.2017.1347105.
  5. De Robertis A and Higginbottom I. 2007. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J Mar Sci 64, 1282-1291. https://doi.org/10.1093/icesjms/fsm112.
  6. Folk RL and Ward WC. 1957. Brazos River bar [Texas]; a study in the significance of grain size parameters. J Sediment Res 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.
  7. Hilgert S, Sotiri K and Fuchs S. 2019. Advanced assessment of sediment characteristics based on rheological and hydroacoustic measurements in a Brazilian reservoir. In: Proceedings of the 38th IAHR World Congress. Panama City, Panama, 1-6.
  8. Jonker A. 2023. Mapping essential fish habitats of herring (Clupea harengus) and mackerel (Scomber scombrus) in the North East Atlantic. M.S. Thesis, University of Wageninge, Wageningen, Netherlands.
  9. Kang D, Sin H, Kim S, Lee Y and Hwang D. 2003. Species identification and noise cancelation using volume backscattering strength difference of multi-frequency. Korean J Fish Aquat Sci 36, 541-548. https://doi.org/10.5657/kfas.2003.36.5.541
  10. Kang MH, Furusawa M and Miyashita K. 2002. Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton. ICES J Mar Sci 59, 794-804. https://doi.org/10.1006/jmsc.2002.1229.
  11. Kim EH, Mukai T and Iida K. 2016. Acoustic identification of krill and copepods using frequency differences of volume backscattering strength around Funka Bay, Hokkaido, Japan. Nippon Suisan Gakkaishi 82, 587-600. https://doi.org/10.2331/suisan.15-00039.
  12. Kim HY, Hwang BK, Lee YW, Shin HO, Kwon JN and Lee KY. 2011. Hydro-acoustic survey on fish distribution and aggregated fish at artificial reefs in marine ranching area. J Kor Soc Fish Tech 47, 139-145. https://doi.org/10.3796/KSFT.2011.47.2.139.
  13. Lee HB, Lee KY, Kim SH, Kim IO and Kang DH. 2014. Hydroacoustic survey of fish distribution and aggregation characteristics in the Yongdam Reservoir, Korea. Korean J Fish Aquat Sci 47, 1055-1062. https://doi.org/10.5657/KFAS.2014.1055.
  14. NIFS (National Institute of Fisheries Science). 2024. Database for Major Species Ecology and Life History. Retrieved from https://www.nifs.go.kr/contents/actionContentsCons0088.do on Aug 09, 2023.
  15. Shabangu FW, Coetzee JC, Hampton I, Kerwath SE, de Wet WM and Lezama-Ochoa A. 2014. Hydro-acoustic technology and its application to marine science in South Africa. In: Reflections on the State of Research and Technology in South Africa's Marine and Maritime Sectors. Funke N, Claassen M, Meissner R and Nortje K, eds. The Council for Scientific and Industrial Research Marine and Maritime Sectors, Pretoria, South Africa, 122-152.
  16. Tegowski J. 2005. Acoustical classification of the bottom sediments in the southern Baltic Sea. Quater Inter 130, 153-161. https://doi.org/10.1016/j.quaint.2004.04.038.
  17. Wu RSS, Lam KS, MacKay DW, Lau TC and Yam V. 1994. Impact of marine fish farming on water quality and bottom sediment: A case study in the sub-tropical environment. Mar Environ Res 38, 115-145. https://doi.org/10.1016/0141-1136(94)90004-3.
  18. Xie H, Hu Y, Gao M, Chen L, Zhang R, Liu T, Gao F, Zhou H, Peng X, Li X, Zhu J, Li C, Peng R, Gao Y, Li C, Li J and He Z. 2023. Research progress and application of deep in-situ condition preserved coring and testing. Int J Min Sci Technol 33, 1319-1337. https://doi.org/10.1016/j.ijmst.2023.06.007.
  19. Ryan TE, Downie RA, Kloser RJ and Keith G. 2015 Reducing bias due to noise and attenuation in open-ocean echo integration. ICES J Mar Sci 72, 2482-2493. https://doi.org/10.1093/icesjms/fsv121.
  20. Bulu S and Ergin S. 2023. An investigation on hydro-acoustic characteristics of submerged bodies with different geometric parameters. Continuum Mech Therm 35, 1123-1146.