DOI QR코드

DOI QR Code

파워 싱킹 시트 프레임 쿠션 브라켓 구조의 강도 최적화 설계 연구

A Study on the Strength Optimized Design of Cushion Bracket on Power Sinking Seat Frame

  • 허진희 (공주대학교 기전공학과) ;
  • 양윤식 (대일공업(주)) ;
  • 주영조 (공주대학교 기계공학과) ;
  • 전의식 (공주대학교 기전공학과)
  • Jin Hee Heo (Dept. of Mechanical and Electrical Engineering, Kongju National University) ;
  • Yun Sik Yang (Daeil Industrial Co., Ltd.) ;
  • Yeong Jo Ju (Dept. of Mechanical Engineering, Kongju National University) ;
  • Euy Sik Jeon (Dept. of Mechanical and Electrical Engineering, Kongju National University)
  • 투고 : 2024.10.16
  • 심사 : 2024.10.25
  • 발행 : 2024.10.31

초록

최근 자율주행 기술의 발전과 함께 차량이 단순한 이동 수단을 넘어 휴식과 업무 공간으로 변화함에 따라, 차량 내 공간 활용성을 극대화하기 위한 시트 프레임 개발이 활발히 진행되고 있다. 특히, 격납식 싱킹 시트의 전동화는 수동식에서 자동식으로 전환되면서 시트 프레임 내 부품의 강도 설계가 중요한 과제로 떠오르고 있다. 본 연구에서는 싱킹 시트 프레임의 수동식 접이 메커니즘을 전동 모터를 활용한 자동 메커니즘으로 전환하고, 그 과정에서 요구되는 부품의 사양과 강도 설계를 수행하였다. 전동화를 위한 주요 구성요소를 간소화하였고, 특히 쿠션 브라켓 부위에 적용되는 전동 모터의 배치 각도와 길이에 따른 설계변수를 3수준으로 설정하여 3D 모델링을 진행하였다. 연구 결과 첫째, 다물체 동역학 해석을 통해 전동 모터의 허용 범위를 분석한 결과, 기준 배치와 비교하여 모터의 힘과 토크를 각각 30.25%, 6.7% 감소시킬 수 있는 최적의 배치 각도를 확인하였다. 둘째, 쿠션 브라켓 배치에 따른 모터의 최대 허용치와 후방 모멘트를 고려하여 강도 해석을 수행한 결과, 변형량과 응력을 각각 13.76%, 34.95% 감소시킬 수 있는 최적의 각도와 길이를 도출하였다. 최종적으로, 다물체 동역학 해석 결과와 일치하는 쿠션 브라켓의 최적 배치를 결정하였으며, 이 과정은 향후 시트 프레임의 자동화 설계 방안에 유용한 참고 자료로 활용될 수 있을 것으로 기대된다.

With recent advancements in autonomous driving technology, vehicles are evolving beyond being simple means of transportation to become spaces for rest and work. As a result, the development of seat frames that maximize the use of interior space has been actively pursued. In particular, the electrification of containment sinking seats has emerged as a significant challenge, especially regarding the structural strength design of seat frame components as they transition from manual to automated systems. This study aims to convert the manual folding mechanism of the sinking seat frame into an automated mechanism using electric motors and to design the required component specifications and strength during the process. The main components for electrification were simplified, and, in particular, the design variables related to the placement angle and length of the electric motor applied to the cushion bracket were set at three levels, with subsequent 3D modeling conducted. The study results are as follows: Firstly, multi-body dynamic analysis showed that, compared to the standard configuration, an optimal motor arrangement angle can reduce motor force and torque by 30.25% and 6.7%, respectively. Secondly, strength analysis, considering the maximum allowable motor load and rear moment for each cushion bracket configuration, indicated that deformation and stress could be reduced by 13.76% and 34.95%, respectively, through the optimal angle and length. Finally, the optimal configuration of the cushion bracket, which aligns with the multi-body dynamic analysis results, was determined. This process is expected to provide a useful reference for future design strategies for automated seat frames.

키워드

과제정보

본 논문은 2 023년 중소벤처기업부의 중소기업기술혁신개발사업 수출지향형 연계과제(RS-2023-00272394)의 연구비 지원에 의한 연구임

참고문헌

  1. Seung-Ju Jang, "SW technology trends for autonomous vehicles", Information and Communications Magazine, 33(4), 27-33, 2016.
  2. Ju-Yeong Kwon, and Da-Young Ju, "Analysis and Classification of In-Vehicle Activity Based on Literature Study for Interior Design of Fully Autonomous Vehicle", Journal of the HCI Society of Korea, 13(2), 5-20, 2018.
  3. You-Sun Park, "A Study on Mobility Furniture Composition for a Segment Model Proposal for Autonomous Driving Cars", Journal of the Korea Academia-Industrial cooperation Society, 23(4), 370-376, 2022.
  4. Seong-Ho Kim, and Su-Bin Kim, et al., "Seat Model Study for Autonomous Vehicle", Journal of the Korean Auto-vehicle Safety Association, 14(4), 27-34, 2022
  5. Key-Sun Kim, and Sung-Soo Kim, et al., "Study on Structural Strength Analysis of Automotive Seat Frame", Journal of the Korea Academia-Industrial cooperation Society, 14(1), 39-44, 2013
  6. Dong-Seok Shin, and Euy-Sik Jeon, "The Design of Containment Mechanism for Dive Seat of using the 4-Link Mechanism", Annual Conference of the the Korean Society of Automotive Engineers, 922-923, 2013
  7. Dong-Seok Shin, and Euy-Sik Jeon, "Slot-Shape Design of the Recliner Collaboration Module for Manual One-Touch Sinking Seat", Journal of the Korean Society of Mechanical Technology, 17(3). 525-530, 2015
  8. Dong-Seok Shin, and Euy-Sik Jeon, "The Design of the Link Mechanism for Manual One Touch Dive Seat", Spring Conference of the the Korean Society of Precision Engineering, 1171-1172, 2013
  9. A. Spaggiari, and M. Cocconcelli, et al., "Synthesis and optimization of an eight-bar linkage mechanism for seat suspensions", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(9), 429 2022.
  10. Md. Fuhad Hassan, and Euy-Sik Jeon, "Kinematic Design of Automobile Seat Connection Mechanism to the Reactive Head Restraint", Spring Conference of the the Korean Society of Precision Engineering, 865-866, 2010
  11. Nicolas Bourdet, and Remy Willinger, "Coupled head-neck-torso and seat model for car seat optimization under rear-end impact", Journal of Sound and Vibration, 313(3-5), 891-907, 2008
  12. Hyeon-Ho Shin, Hee-Yong Kang, and Sung-Mo Yang., "Optimal Design of Automotive Seat Back Frame Using Finite Element Analysis", Journal of the Korean Auto-vehicle Safety Association, 11(4), 57-62, 2019
  13. Seong-Ho Kim, and Su-Bin Kim, et al., "Seat Model Study for Autonomous Vehicle", Journal of the Korean Auto-vehicle Safety Association, 14(4), 27-34, 2022
  14. Byung-Kil Kim, and Min-Soo Kim, et al., "Optimal Design of the Passenger Vehicle Aluminum Seat for Weight Reduction and Durability Performance Improvement", Transactions of the the Korean Society of Automotive Engineers, 13(3), 58-63, 2005
  15. Han-seul Jang, and Seong-kyu Choi, et al., "A Study on the Development of Lightweight Seat Cushion Extension Module", Journal of the Korea Academia-Industrial cooperation Society, 17(8), 200-207, 2016