Activation of Delta-doped N-type Layers in Nanotunneling Silicon Junction

나노터널링 실리콘 접합에서 델타도핑된 N형층의 활성화에 관한 연구

  • Inseung Lee (Department of Mechanical Engineering, Jeonbuk National University) ;
  • Keunjoo Kim (Department of Mechanical Engineering, Jeonbuk National University)
  • 이인승 (전북대학교 기계공학과) ;
  • 김근주 (전북대학교 기계공학과)
  • Received : 2024.07.23
  • Accepted : 2024.09.12
  • Published : 2024.09.30

Abstract

We investigated the n-type δ-doping activation of the tunneling junctions of Si nanolayers for silicon tandem cell applications. The thin film growth of pn junction with the inclusion of phosphorus monolayer was performed by plasma-enhanced chemical vapor deposition with the implement on 6-inch wafers of p-Si microtextured substrates. The rapid thermal annealing processes with various temperatures were performed to activate the δ-doped layer. The activation was confirmed by the electron spin resonance with Lande factor g=2.006085 for the delocalized conduction electron from the phosphorus δ-doped layer at the magnetic field of 3357.5 Gauss. The tunneling junction shows the Ohmic character at the low voltage and the Schottky character at the high voltage bias.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1F1A1062800). This work was also supported by the 2024-2025 project of Jeonbuk National University.

References

  1. M. De Bastiani, A. S. Subbiah, E. Aydin, F. H. Isikgor, T. G. Allen, and S. De Wolf, Recombination junctions for efficient monolithic perovskite-based tandem solar cells: physical principles, properties, processing and prospects, Mater. Horiz. 7, 2791-2809 (2020).
  2. Y. Lee, V. A. Dao, S. M. Iftiquar, S. Kim, and 4. J. Yi, Current transport studies of amorphous n/p junctions and its application in a-Si:H/HIT-type tandem cells, Prog. Photovolt: Res. Appl. 24, 52-58 (2016).
  3. J. Yang, J. Goguen, and R. Kleiman, Silicon solar cell with integrated tunnel junction for multijunction photovoltaic applications, IEEE Electron Dev. Lett. 33(12), 1732-1734 (2012).
  4. J. Wang, D. Wheeler, Y. Yan, J. Zhao, S. Howard, and A. Seabaugh, Silicon tunnel diodes formed by proximity rapid thermal diffusion, IEEE Electron Dev. Lett. 24(2) 93-95 (2003).
  5. K. Sumida, K. Ninomiya, M. Fujii; K. Fujio, S. Hayashi, M. Kodama, H. Ohta, Electron spin-resonance studies of conduction electrons in phosphorus-doped silicon nanocrystals, J. Appl. Phys. Vol. 101(3), 033504 (2007).
  6. R. C. Fletcher, W. A. Yager, G. L. Pearson, A. N. Holden, W. T. Read, and F. R. Merritt, Spin resonance of donors in silicon, Phys. Rev. 94, 1392 (1954).
  7. S. Maekawa and N. Kinoshita, Electron spin resonance studies of interacting donor clusters in phosphorusdoped silicon, J. Phys. Soc. Jpn. 20, 1447, (1965).
  8. A. Roy, M. Turner, and M. P. Sarachik, Susceptibility of Si:P across the metal-insulator transition. I. Diamagnetism, Phys. Rev. B 37, 5522, (1988).
  9. J. D. Quirt and J. R. Marko, Electron-spin-resonance measurements of the spin susceptibility of heavily doped -type silicon, Phys. Rev. Lett. 26, 318 (1971).
  10. H. Ue and S. Maekawa, Electron-spin-resonance studies of heavily phosphorus-doped silicon, Phys. Rev. B 3, 4232, (1971).
  11. E. F. Schubert, Delta doping of III-V compound semiconductors: Fundamentals and device applications, J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films, 8(3), 2980-2996 (1990).
  12. Y. Sun, S. Fan, D. Jung, R. D. Hool, B. Li, M. Vaisman, and M. Lee, Delta-doping for enhanced III-V tunnel junction performance, IEEE J. Photovoltaics, 12(4), 976-981 (2022).
  13. I. Lee and K. Kim, Sulfur Defect-induced n-type MoS2 thin films for silicon solar cell applications, J. Semicon. Display Technol. 22(3), 46-51, (2023).
  14. E. H. Kim, Y. H. Choi, H. J. Jeon, W. H. Jang, and G. Kim, The study on the uniformity, deposition rate of PECVD SiO2 deposition, J. Semicon. Display Technol. 23(2), 87-91 (2024).
  15. H.-C. Wang and H.-I. Seo, A study on various parameters of the PE-CVD chamber with wafer guide ring, J. Semicon. Display Technol. 23(2), 55-59 (2024).
  16. D. G. Liu, J. C. Fan, C. P. Lee, C. M. Tsai, K. H. Chang, D. C. Liou, T. L. Lee and L. J. Chen, Direct observation of Si delta-doped GaAs by transmission electron microscopy, Appl. Phys. Lett. 60(21), 2628-2630 (1992).
  17. W. I. Park, Electrical properties of delta-doped siliconnanowire field-effect transistors, J. Kor. Phys. Soc. 53(4), L1759-L1763 (2008).
  18. W. Gordy, Theory and applications of electron spin resonance, (Techniques of Chemistry Vol. 15) John Wiley & Sons, Inc. New York, (1980) p. 2.
  19. K. Nakazawa and K. Tanaka, Effect of substrate temperature on recrystallization of plasma chemical vapor deposition amorphous silicon films, J. Appl. Phys. 68 (3), 1029-1032 (1990).
  20. D. Beeman, R. Tsu and M. F. Thorpe, Structural information from the Raman spectrum of amorphous silicon, Phys. Rev. B 32(2), 874-878 (1985).
  21. A. Goyal, P. R. Soni, Doping of nano-crystalline silicon powders by mechanical alloying: the process and characterization, J. Mater. Sci: Mater. Electron. 28, 14720-14727 (2017).
  22. D. K. Schroder, R. Noel Thomas, and J. C. Swartz, Free carrier absorption in silicon, IEEE Trans. Electron Dev. ED-25(2), 254-261 (1978).
  23. E. F. Schubert, Doping in III-V Semiconductors (Cambridge University Press, New York, 1993), Chap. 7.
  24. Y.-K. Su, R.-L. Wang, and H.-H. Tsai, Delta-doping interband tunneling diode by metal-organic chemical vapor deposition, IEEE Trans. Electron Dev. 40(12), 2191-2198 (1993).
  25. C. Halsey, J. Depoy, D. M. Campbell, D. R. Ward, E. M. Anderson, S. W. Schmucker, J. A. Ivie, X. Gao, D. A. Scrymgeour, and S. Misra, Accelerated lifetime testing and analysis of delta-doped silicon test structures, IEEE Trans. Dev. Mater. Reliability, 22(2) 169-174 (2022).