• Title/Summary/Keyword: N-Type Delta Doping

Search Result 7, Processing Time 0.021 seconds

Improvement of the LED Performance Using Mg Delta-doing in p Type Cladding Layer for Sensor Application (p 형 반도체 층의 Mg 델타 도핑을 이용한 센서 광원 용 LED의 성능 향상)

  • Kim, Yukyung;Lee, Seungseop;Jeon, Juho;Kim, Mankyung;Jang, Soohwan
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.31-35
    • /
    • 2022
  • The efficacy improvement of the light emitting diode (LED) was studied for the realization of small-size, low power consumption, and highly sensitive bio-sensor instrument. The performance of the LED with Mg delta-doping at the interface of AlGaN/GaN super-lattice in p type cladding layer was simulated. The device with Mg delta-doping showed improved current, radiative recombination rate, electroluminescence, and light output power compared to the conventional LED structure. Under the bias condition of 5 V, the improved device exhibited 20.8% increase in the light output power. This is attributed to the increment of hole concentration from stable ionization of Mg in p type cladding layer. This result is expected to be used for the miniaturization, power saving, and sensitivity improvement of the bio-sensor system.

Mg Delta-Doping Effect on a Deep Hole Center Related to Electrical Activation of a p-Type GaN Thin Film

  • Park, Hyo-Yeol;Jeon, Kyoung-Nam;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • The authors investigated the photoluminescence (PL) and the electron paramagnetic resonance (EPR) from an magnesium (Mg)-doped GaN thin film with a delta-doped layer. The regularly doped sample shows a PL peak at 2.776 eV for the as-grown sample, and the peak shifts to 2.904 eV and increases in intensity for the annealed sample. The delta-doped sample also shows the same PL peak as does the regularly doped sample. However, only the annealed delta-doped layer shows a sharp EPR with a small isotropic Lande g-factor, $g_{II}$, of 2.029. This resonance is attributed to the delta-doped layer, which forms a hole-bound Mg-N atomic structure instead of the $Mg_{Ga}-V_N$ defect complex, indicating that the delta-doped sample was not optically activated to form PL centers but was instead electrically activated to form a hole-bound state.

Activation of Delta-doped N-type Layers in Nanotunneling Silicon Junction (나노터널링 실리콘 접합에서 델타도핑된 N형층의 활성화에 관한 연구)

  • Inseung Lee;Keunjoo Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.29-34
    • /
    • 2024
  • We investigated the n-type δ-doping activation of the tunneling junctions of Si nanolayers for silicon tandem cell applications. The thin film growth of pn junction with the inclusion of phosphorus monolayer was performed by plasma-enhanced chemical vapor deposition with the implement on 6-inch wafers of p-Si microtextured substrates. The rapid thermal annealing processes with various temperatures were performed to activate the δ-doped layer. The activation was confirmed by the electron spin resonance with Lande factor g=2.006085 for the delocalized conduction electron from the phosphorus δ-doped layer at the magnetic field of 3357.5 Gauss. The tunneling junction shows the Ohmic character at the low voltage and the Schottky character at the high voltage bias.

  • PDF

Electron Spin Resonance from Mg-doped GaN Semiconductor Thin Films (Mg도핑된 GaN 반도체 박막의 전자스핀공명)

  • Park, Hyo-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.1-5
    • /
    • 2005
  • Electon spin resonance measurements have been performed on the Mg-doped wurtzite GaN thin films grown on sapphire substrates by low-pressure metal-organic chemical vapor deposition. The sample set included films as-grown with the regular Mg doped and Mg delta doped samples and the corresponding annealed ones. The resonance signal has been observed from the annealed Mg delta-doped sample with the Lande g value of 2.029. This indicates that the singlet resonance signal originates from the neutral Mg acceptor located at 0.24 eV above the valence band edge and 0.13 eV above the Fermi level because of the nuclear hyperfine spin 1=0 of Mg and the larger value than the free electron g=2.0023.

  • PDF

Controlling Electrical Properties in Zinc Oxide Thin Films by Organic Concentration

  • Yun, Gwan-Hyeok;Han, Gyu-Seok;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.209.2-209.2
    • /
    • 2013
  • We proposed and fabricated zinc oxide thin-film transistors (TFTs) employing 4-mercaptophenol (4MP) doped ZnO by atomic layer deposition (ALD) that results in highly stable and high performance. The 4MP concentration in ZnO films were varied from 1.7% to 5.6% by controlling Zn:4MP pulses. The n-type carrier concentrations in ZnO thin films were controlled from $1.017{\times}10^{20}/cm^3$ to $2.903{\times}10^{17}/cm^3$ with appropriate amount of 4MP doping. The 4.8% 4MP doped ZnO TFT revealed good device mobility performance of 8.4 $cm^2/Vs$ and the on/off current ratio of 106. Such 4MP doped ZnO TFTs exhibited relatively good stability (${\Delta}V_{th}$: 2.4 V) under positive bias-temperature stress while the TFTs with only ZnO showed a 4.3 ${\Delta}V_{th}$ shift, respectively.

  • PDF

Rutile Ti1-xCoxO2-δ p-type Diluted Magnetic Semiconductor Thin Films

  • Seong, Nak-Jin;Yoon, Soon-Gil;Cho, Young-Hoon;Jung, Myung-Hwa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An attempting to produce a p-type diluted magnetic semiconductor (DMS) using $Ti_{1-x}Co_xO_{2-\delta}-based$ thin films was made by suitable control of the deposition parameters including deposition temperature, deposition pressure, and doping level using a pulsed laser deposition method. T$Ti_{0.97}Co_{0.03}O_{2-\delta}-based$ (TCO) films deposited at $500^{\circ}C$ at a pressure of $5\times10^{-6}$ Torr showed an anomalous Hall effect with p-type characteristics. On the other hand, films deposited at $700^{\circ}C$ at $5\times10^{-6}$ Torr showed n-type behaviors by a decreased solubility of cobalt. The charge carrier concentration in the p-type TCO films was approximately $7.9\times10^{22}/cm^3$ at 300 K and the anomalous Hall effect in the p-type TCO films was controlled by a side-jump scattering mechanism. The magnetoresistance (MR), measured at 5 K in p-type TCO films showed a positive behavior in an applied magnetic field and the MR ratio was approximately 3.5 %. The successful preparation of p-type DMS using the TCO films has the potential for use in magnetic tunneling junction devices.

Anodic Oxidation of Silicon in EPW Solution (EPW 용액에서의 실리콘 양극 산화막 형성에 관한 연구)

  • Bu, Jong-Uk;Kim, Seon-Mi;Kim, Seung-Hui;Kim, Seong-Tae;Gwon, Suk-In
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.181-187
    • /
    • 1993
  • We have studied the anodic oxidation of silicon in the anisotropic etchant of EPW(Ethylenediamine, Pyrocatechol and Water) solution using the cyclic polarization technique. The samples have been characterized by means of X-ray photoelectron spectroscopy(XPS) and secondary ion mass spectrometry (SIMS). The results of cyclic polarization experiments show that the anodic oxides formed on p- and n-type silicon wafers break down at the same potential while breakdown does not occur up to open circuit potential in the case of $p^+$-Si. Strong etch-resistance of $p^+$-XPS. SIMS depth profiles suggest that the critical concentration of boron for etch-stop to occur appears to be much higher than what is widely believed.

  • PDF